TouchSend Tools

Custom Embedded Controls
Event Functions - Time and Media
Direct Viewer links to other Windows Applications
Baggage Services
INI Read and Write Functions and more

{ewc TSTOOLS, Tsbutton, "OverView"[Macro=ji(qchPath, overview')][Font="Arial" /S11/B4/3-]/W61/H18/B1/D2} {ewc TSTOOLS,
Tsbutton,"Buttons"[Macro=ji(qchPath, buttons')][Font="Arial" /S11/B4/3-]1/W61/H18/B1/D2} {ewc TSTOOLS,
Tsbutton,"Functions"[Macro=ji(qchPath, functionmenu')][Font="Arial" /S11/B4/3-]/W61/H18/B1/D2} {ewc TSTOOLS,
Tsbutton,"Order/Exit"[Macro=ji(qchPath," About")][Font="Arial" /S11/B4/3-]/W61/H18/B1/D2} {ewc TSTOOLS,
Tsbutton,"Index"[Macro=ji(qchPath, showindex')][Font="Arial" /S11/B4/3-]/W61/H18/B1/D2} {ewc TSTOOLS,
Tsbutton,"Help"[Macro=TsHelpContext("tshelp.hlp',2)][Font="Arial" /S11/B4/3-] /W61/H18/B1/D2}

{ewc TSTOOLS, Tsbutton,"Read Me"[Macro=ji(qchPath, readme')][Font="Arial" /S11/B4/3-]/W61/H18/B1/D2} {ewc TSTOOLS,
Tsbutton,"Licence"[Macro=ji(qchPath, support')][Font="Arial" /S11/B4/3-]/W61/H18/B1/D2} {ewc TSTOOLS, Tsbutton,"TsToolsW
Online"[Macro=ji(qchPath, dtsdocs')][Font="Arial" /S11/B4/3-]/W125/H18/B1/D2} {ewc TSTOOLS, Tsbutton,"Timer/MCI
demo"[Macro=pi(tstools.mvb', caution_re_vid>mcipopup')][Font="Arial" /S11/B4/3-]/W125/H18/B1/D2}

TouchSend Tools

{ewc MVMCI2, ViewerMClI, [device AVIVideo][name ts1][noframe]!tsopen.avi}

Custom
Embedded Controls

Time and Multimedia
Event Management

Hierarchical.
Index

And more...

Events and time

Can be varied

Programatically

{ewc TSTOOLS,
Tsbutton,"+"[Macro=ClosePane(main',” graphbut');ClosePane(main', tsbutton'); TsExec(pbrush.exe', ", Paint
'-1,1,1); TsExecPos("Paint',320,0,319,480);JumpID(tstools.mvb>paint',
“paintdemo')][Font="Arial"/S10/B7/3-] /W16/H17/B1/D2} Run Paintbrush... {ewc TSTOOLS,
Tsbutton,"+"[Macro=PI(qchPath, “buttonpopup3>Popup3');PI(qchPath, “buttonpopup1>popup1’);PI(qchPath,
“buttonpopup4>Popup4');PI(qchPath, ‘buttonpopup2>Popup2')][Font="Arial"/S10/B7/3-] /'W16/H17/B1/D2}
Popups
{ewc TSTOOLS, Tsbutton, "Height 70" [Font="Arial"/S11/B4/A900] [Macro =
ClosePane("main',"graphbut’);pi(gchPath, buttonh70>button")[/H70/W20/x1/y55/B1/N/D2} {ewc
TSTOOLS,Tsbutton, "Click Me" [Macro=ClosePane(main', graphbut'); TsinfoBox(4, TouchSend
Textbuttons',™, This command was executed from a TouchSend Text Button.',”,0,255,0,™")] [Font="Arial"
/S9/B4/3-1/H20/w100/B1/D2}

{ewc TSTOOLS, Tsbutton,"Tiny"[Macro=TsInfoBox(4, TouchSend Textbuttons'," This command was executed from
a TouchSend Text Button',"Make sure to press the donmissutton found in',’ TsToolsW
Online',0,255,0,"")][Font="Arial" /S8/B4/3-]1 /W23/H17/B1/D2} {ewc TSTOOLS,
Tsbutton,"Little"[Macro=TsInfoBox(1," About TouchSend',’ TouchSend is a registered trademark of',” TouchSend
Corporation',’904-668-6180',255,0,0,"")][Font=F"Arial" /S9/B4/U1] W37 /H26/B1/D2} {ewc TSTOOLS,
Tsbutton,"&Medium"[Macro=TsInfoBox (3, About TouchSend',"Do you want to do a title in Viewer but..','need
some help through the learning curve and design process ?',"Call TouchSend at 904-668-6180. Save months of
work...',0,255,0,"")][Name=med][Font="Arial" /S20/B4]W78/H78/B1/D2} {ewc TSTOOLS,
Tsbutton,"Big"[Macro=TsInfoBox(5,” About TouchSend'," The TsTimer Function',”submits Viewer commands', after
a time duration.',192,192,192,"")][Font="Courier New" /S46/B8/3+/A450][Name=BIG] W168
/H116/B1/D3/N/x30/y70}

{ewc TSTOOLS, Tsbutton,"Baby
Pictures"[Macro=ClosePane('main'," graphbut'); ClosePane(main', tsbutton'); PI(qchPath, ‘bevan>Bevan')]
[Font="Times New Roman"/S11/B4]W356/H17/B1/D2}

{ewc TSTOOLS,

Tsbutton,"White"[Macro=ClosePane("main'," graphbut');ClosePane(* main', tsbutton');MasterNSR Color("main',
255,255,255)][Font="Arial" /S11/B4/3-]W43 /H30/B1/D2} {ewc TSTOOLS,
Tsbutton,"Yellow"[Macro=ClosePane('main'," graphbut');ClosePane("main', tsbutton');MasterNSR Color("main',
255,255,0)][Font="Arial" /S11/B4/3-]W43/H30/B1/D2} {ewc TSTOOLS,
Tsbutton,"Black"[Macro=ClosePane('main'," graphbut');MasterNSR Color("main',
0,0,0);PaneID(qchPath, tsbuttonpic>tsbutton',0)][Font="Arial" /S11/B4/3-]W43/H30/B1/D2} {ewc TSTOOLS,
Tsbutton,"Red"[Macro=ClosePane('main'," graphbut');ClosePane(" main', tsbutton');MasterNSRColor('main',
128,0,0)][Font="Arial" /S11/B4/3-]W43/H30/B1/D2} {ewc TSTOOLS,
Tsbutton,"Blue"[Macro=ClosePane('main'," graphbut');ClosePane('main', tsbutton');MasterNSR Color(*main',
0,0,128)][Font="Arial" /S11/B4/3-]W43 /H30/B1/D2} {ewc TSTOOLS,
Tsbutton,"Grey"[Macro=ClosePane('main'," graphbut'); ClosePane(" main', tsbutton');MasterNSR Color(*main',
192,192,192)][Font="Arial" /S11/B4/3-]W43 /H30/B1/D2} {ewc TSTOOLS,
Tsbutton,"Green"[Macro=ClosePane('main',” graphbut');ClosePane('main', tsbutton');MasterNSR Color("main',
0,128,0)][Font="Arial" /S11/B4/3-]W43 /H30/B1/D2}

{ewc TSTOOLS, Tsbutton,"Button
Info..."[Macro=ClosePane('main'," graphbut');ClosePane(' main', tsbutton');PI(qchPath, tsbuttons>tsbutton')]
[Font="Arial" /S11/B4/3+] W100/H32/B2/D2} {ewc TSTOOLS, Tsbutton," Accelerator
Keys"[Macro=ClosePane('main', tsbutton'); Add Accelerator(0x4D, 4,

“TsPressButton('med',150)");PaneID(qchPath, tskeys>graphbut',0)][Font="Arial" /S11/B4/3+] /W100/H32/B2/D2}
{ewc TSTOOLS, Tsbutton,"Button

Details..."[Macro=ClosePane('main'," graphbut');ClosePane(main', tsbutton');JI(qchPath, tsbutton')][Font="Arial"

/S11/B4/3+] W100/H32/B2/D2}

{ewec TSTOOLS, Tsbutton,"Return"[Macro=JI(qchPath, TSFull')][Font="Arial" /S13/B4/3-] /W87 /H32/B1/D2}

The
TouchSend
Timer

Function

{ewc TSTOOLS, Tsbutton, " [Name=0OnOff][Graphic="!switchup.dib',"Iswitchdn.dib', Iswitchdi.dib"]
[Macro=ClosePane('main',"graphbut');ClosePane('main’, tsbutton');MasterNSRColor("main',

128,128,0);PanelD(qgchPath, switchon>swonoff',0);PanelD(qchPath, tsbuttongraphic>graphbut',0)}/B1/
DO/N}

{ewc TSTOOLS, Tsbutton, "" [Name=0OnOff][Graphic="!switchdn.dib'," !switchup.dib'," switchdi.dib']
[Macro=ClosePane(main', graphbut');MasterNSR Color("main',
0,0,0);PaneID(qchPath, switchoff>swonoff',0); TsEnableButton(OnOff");PaneID(qchPath, tsbuttonpic>tsbutton',0)]/
B1/DO/N}

{ewc TSTOOLS,TsButton,"Close~Paintbrush."/AR/ML30R3/H40/W130/B2/D1/N/2 [name=closepb][graphic="!
tsblgoup.dib', !tsblgodn.dib', !tsblgodi.dib/ALC][macro=TsExecKill("paint');Close Window(paint')|[Font="Times
New Roman"/S13/B4/3-]}

The TouchSend MCI Function

{ewc MVMCI2, ViewerMClI, [device AVIVideo][autostart][noframe][name vid1]!tsmcia.avi}

The
TouchSend
MCI

Function

Of course TouchSend Buttons Can Control Popups

Of course Can Control Multiple Popups

Of course TouchSend Buttons Can Multiple Control Popups

Of course TouchSend Buttons Can Control Multiple Popups

{ewc MVMCI2, ViewerMCI, [device AVIVideo][name tsvid1][autostart][stdcontrol]!tsmcib.avi}

{ewc MVMCI2, ViewerMClI, [device AVIVideo][name tsvid2][autostart][stdcontrol]!tsmcic.avi}

{ewc TSTOOLS, tsbutton,"Continue"[Macro=ji(qchPath, functionmenu')][Font="Arial" /S12/B4] /W100 /H80}

{ewc MVMCI2, ViewerMClI, [device AVIVideo][autostart][noframe]!tsmcia.avi}

Hello

{ewc TSTOOLS, Tsbutton,"About"[Macro=about()] [Font="Arial" /S10/B4] /W100 /H64/B2/D2/N}

The
TouchSend
Process

Function

TouchSend Tools

{ewc TSTOOLS, Tsbutton,"Graphics demo"[Macro=ClosePane(main', ‘arrowpan');JI("tstools>Second', "chartdemo')][Font="Arial" /S8/B4]
/W100 /H16/B1/D2/N}

{ewc TSTOOLS, Tsbutton,"Close Write and Continue"[Macro=TsWriteKill();PositionWindow(0, 0, 1024,1024, 0,

‘main');ji(qchPath,” functionmenu')][Font="Arial" /S8/B4] /W100 /H16/B1/D2/N}

{ewc MVMCI2, ViewerMClI, [device AVIVideo][autostart][looping][noframe][share AVI]!bpmore.avi}

TsClose

TsVars

Ts5nd

TsIni

TsInfoBox

TsInfoBox

TsPrint

TsPrint

TshMacro

TshMacro

TsYesMo

TsYesMo

TsWinStyle

oo |

TsSaveBag

TsExitTopic

TsWave

TouchSend 13%
Graphics Display
Demo

13%

aT%
1%

{ewc TSTOOLS,tsbutton,"Help"[Macro=TsHelpContext("tshelp1.hlp',1)][Font="Arial"
/S11/B4/3-]W62/H16/B1/D2/N/P-} {ewc TSTOOLS, tsbutton,"Print"[Macro=Print()][Font="Arial"
/S11/B4/3-]W62/H16/B1/D2/N/P-} {ewc TSTOOLS, tsbutton,"Close"[Macro=PanelD(tstools>main',
‘arrowg>arrowgrn',0);CloseWindow("second')|[Font="Arial" /S11/B4/3-]W62/H16/B1/D2/N/P-}

To Order TouchSend Tools
Call 904-668-6180, or
Via Compuserve: 73374,2071
Mail: 1904 Chatsworth Way

Tallahaszee, F1 32308

Press the Order Button
for more information...

{ewc TSTOOLS, tsbutton,"Order..."[Macro =JumpID(tstools>touchsnd', ‘orderform!')][Font="Arial"
/s1/Ba3-wiooH16B1/D2N; Order Information

{ewc TSTOOLS, tsbutton,"Restart"[Macro=SaveMark(‘nowow');Back()][Font="Arial" /S11/B4/3-]W100/H16/B1/D2/N} To
the Main Screen

{ewc TSTOOLS, tsbutton," TouchSend"[Macro =JumpID(tstools>touchsnd', ‘consult')][Font="Arial"

/s11/B4s-wiooH16B1/D2N} Consulting Services
{ewc TSTOOLS,tsbutton,"Credits"[Macro=Popupld("tstools.mvb","creditlist>credits")][Font="Arial"

/s11/B43-wiooH16B1/D2Ny Credits

{ewc TSTOOLS, tsbutton,"Exit"[Macro=TsYN(1, Thanks for Viewing the TouchSend Demo',' Do you want to Order TouchSend
Tools',” or the TouchSend Index ?',"',128,128,0, JumpID(tstools>touchsnd', orderform')',"Exit()")][Font="Arial"

/S11/B4/3-IW100/H16/B1/D2/N} Exit

{ewc MVMCI2, ViewerMCI, [device AVIVideo][noframe][name credits][autostart]!tsanim.avi}

The chart graphic should have pasted into Write. If Write is not on your system in the path, this part
of the demonstration will not work. As well, issuing a command from a secondary window is
documented as not consistently dependable.

It is possible that the chart graphic may not have pasted correctly on your system. However, it is now
on the clipboard and can be pasted into any application that will accept a graphic. This is a very good
technique for illustrations in textbooks.

TsVar Functions

The TsVar Functions allow the author to set a variable and then increment or decrement a counter and
submit a command string to Viewer on reaching the count, if less than the count, more than the count etc.
The count can be displayed in an embedded TsPane.

{ewc TSTOOLS, Tsbutton,"Return"[Macro=back()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

TsInfoBox

The TsInfoBox Function allows the author to create a custom "about" or dialog box. The author has control
of the title and three lines of text as well as the color of the infobox. There are several styles of dialog box.
See also: TSYesNo.
{ewc TSTOOLS, Tsbutton,"Example"[Macro=TsInfoBox(4, TouchSend Infobox', This is the first line of a
TsInfoBox ',' There can be three lines of 50 characters',” or more with certain styles...',0,255,0,™)]

[Font="Arial" /S11/B4]/W62 /H16/B1/D2/N} {ewc TSTOOLS, Tsbutton,"Return"[Macro=back()]
[Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

TsIni Functions

The TsIni Functions allow the author to write and read settings and restore marks from disk. As an
example, an author may use an ini file to set a reading level (ie beginner, intermediate and advanced), or to
set the''state" of the title upon re-entry, or with the TsVar functions.

{ewc TSTOOLS, Tsbutton,"Return"[Macro=back()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

TsSnd Function

The TsSnd Function tests for the presence of a sound device. The author has the option of either submitting
a wave file or executing some other command if the sound device is not present.

{ewc TSTOOLS, Tsbutton,"Demo"[Macro=TsSnd('MCICommand(hwndContext, qchPath, *!alarm.wav',
‘play");PI(qchPath, sndyes>snd"); TsTimer(" FocusWindow(main')',3)'," PI(qchPath, sndno>snd'); TsTimer('Fo
cusWindow('main')',3)")][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

{ewc TSTOOLS, Tsbutton,"Return"[Macro=back()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

TsClose

The TsClose Function allows the author to let a user restart at the exact location displayed at the time the
title is closed This is particularly useful in titles such as textbooks, policy/procedure manuals or catalogs.

{ewc TSTOOLS, Tsbutton,"Return"[Macro=back()][Font="Arial" /S11/B4])/W62 /H16/B1/D2/N}

TsClose Demo Page 1

Browse to any one of the close demo screens. Then exit the title. Then restart the title. It will return to the
screen you exited from. Upon your return, you will be able to return to the functions menu.

{ewc TSTOOLS, Tsbutton,"<<"[Font="Arial" /S11/B8]/W62 /H16/B1/D2/N/-} {ewc TSTOOLS,
Tsbutton,">>"[Macro=Next()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

{ewc TSTOOLS, Tsbutton,"Exit the Title"[Macro=IfThenElse(ismark('closedemo')," TsInfoBox(5, TsClose
Demo', Press the RETURN button in order to ', properly exit this part of the demo.,” TsClose is a Useful
Function !!!,192,192,192,")","Exit()")][Font="Arial" /S11/B4]/W124 /H16/B1/D2/N}

TsClose Demo Page 2

Browse to any one of the close demo screens. Then exit the title. Then restart the title. It will return to the
screen you exited from. Upon your return, you will be able to return to the functions menu.

{ewc TSTOOLS, Tsbutton,"<<"[Macro=Prev()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N} {ewc TSTOOLS,
Tsbutton,">>"[Macro=Next()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

{ewc TSTOOLS, Tsbutton,"Exit the Title"[Macro=IfThenElse(ismark('closedemo')," TsInfoBox(5, TsClose
Demo', Press the RETURN button in order to ', properly exit this part of the demo.,” TsClose is a Useful
Function !!!',192,192,192,")","Exit()")][Font="Arial" /S11/B4]/W124 /H16/B1/D2/N}

TsClose Demo Page 3

Browse to any one of the close demo screens. Then exit the title. Then restart the title. It will return to the
screen you exited from. Upon your return, you will be able to return to the functions menu.

{ewc TSTOOLS, Tsbutton,"<<"[Macro=Prev()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N} {ewc TSTOOLS,
Tsbutton,">>"[Macro=Next()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

{ewc TSTOOLS, Tsbutton,"Exit the Title"[Macro=IfThenElse(ismark('closedemo')," TsInfoBox(5, TsClose
Demo', Press the RETURN button in order to ', properly exit this part of the demo.,” TsClose is a Useful
Function !!!',192,192,192,")","Exit()")][Font="Arial" /S11/B4]/W124 /H16/B1/D2/N}

TsClose Demo Page 4

Browse to any one of the close demo screens. Then exit the title. Then restart the title. It will return to the
screen you exited from. Upon your return, you will be able to return to the functions menu.

{ewc TSTOOLS, Tsbutton,"<<"[Macro=Prev()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N} {ewc TSTOOLS,
Tsbutton,">>"[Macro=Next()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

{ewc TSTOOLS, Tsbutton,"Exit the Title"[Macro=IfThenElse(ismark('closedemo')," TsInfoBox(5, TsClose
Demo', Press the RETURN button in order to ', properly exit this part of the demo.,” TsClose is a Useful
Function !!!',192,192,192,")","Exit()")][Font="Arial" /S11/B4]/W124 /H16/B1/D2/N}

TsClose Demo Page 5

Browse to any one of the close demo screens. Then exit the title. Then restart the title. It will return to the
screen you exited from. Upon your return, you will be able to return to the functions menu.

{ewc TSTOOLS, Tsbutton,"<<"[Macro=Prev()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N} {ewc TSTOOLS,
Tsbutton,">>"[Font="Arial" /S11/B8]/W62 /H16/B1/D2/N/-}

{ewc TSTOOLS, Tsbutton,"Exit the Title"[Macro=IfThenElse(ismark(closedemo'),’ TsInfoBox(5, TsClose
Demo', Press the RETURN button in order to ', properly exit this part of the demo.,” TsClose is a Useful
Function !!!,192,192,192,"")',"Exit()")][Font="Arial" /S11/B4]/W124 /H16/B1/D2/N}

{ewc MVMCI2, ViewerMClI, [device AVIVideo][autostart][noframe][looping][share AVI]!arrow.avi}

{ewc MVMCI2, ViewerMCI, [device AVIVideo][autostart][noframe][looping][share AVI]!arrowg.avi}

TsPrint Functions

The TsPrint Functions overcome limitations of the Viewer Print Function. Viewer will not "wait" until
printing is finished before submitting the next command or print., which makes printing more than one topic
impossible.

{ewc TSTOOLS, Tsbutton,"More..."[Macro=Ji(qchPath, PrintFunctions')|[Font="Arial" /S11/B4]/W62

/H16/B1/D2/N} {ewc TSTOOLS, Tsbutton,"Return"[Macro=Back()][Font="Arial" /S11/B4]/W62
/H16/B1/D2/N}

TsMacro Function

The TsMacro Function acts like a subroutine. It submits a string of macros of up to 512 characters without
having to enter a topic or a group. This function effectively overcomes the 512 character limitation of a
topic entry macro or a group macro.

{ewc TSTOOLS, Tsbutton,"Example"[Macro=TsMacro(" !tsdemol.txt',"")][Font="Arial" /S11/B4]/W62
/H16/B1/D2/N} {ewc TSTOOLS, Tsbutton,"Return"[Macro=Back()][Font="Arial" /S11/B4]/W62
/H16/B1/D2/N}

TsYesNo

The TsYesNo Function allows the author to create a custom message box. The author has control of the
title and three lines of text as well as the color of the infobox and can submit a different command for each of
the "Yes" or "No" answers

{ewc TSTOOLS, Tsbutton,"Example"[Macro=TsYN(1, TsYesNo Example'," Do you want to print an order
form', for TouchSend Tools ?'," ',192,192,192,"JI(qchPath, orderform'),"")][Font="Arial" /S11/B4]/W62
/H16/B1/D2/N} {ewc TSTOOLS, Tsbutton,"Return"[Macro=Back()][Font="Arial" /S11/B4]/W62
/H16/B1/D2/N}

TsWinStyle

The TsWinStyle Function allows the author to easily change the window style of the main or a secondary
window, such as removing minimize box, maximize box,caption, title bar.

{ewc TSTOOLS, Tsbutton,"Demo"[Macro=ji(tstools.mvb>third', tswindowdemo")]]
[Font="Arial" /S11/B4]/W62 /H16/B1/D2/N} {ewc TSTOOLS, Tsbutton,"Return"[Macro=Back()]
[Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

TsSaveBaggage Function

The TsSaveBaggage Function allows the author to extract a file from baggage. An example would be
extracting an Excel worksheet and then launching Excel to load it.

{ewc TSTOOLS, Tsbutton,"Demo"[Macro=TsSaveBaggage(order.txt',255,0,0)][Font="Arial" /S11/B4]/W62
/H16/B1/D2/N} {ewc TSTOOLS, Tsbutton,"Return"[Macro=Back()][Font="Arial" /S11/B4]/W62
/H16/B1/D2/N}

TsExitTopic Function

The TsExitTopic Function allows the author to execute a macro on exiting a topic. With certain limitations,
this function works on a topic in the same way that the group exit script works upon exiting a group. Can be
combined with TsMacro

{ewc TSTOOLS, Tsbutton,"Return"[Macro=Back()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

TsWave

The TsWave Function allows the author to submit a wave file that will survive jumps between topics.
Normally Viewer will stop any wave file being played in the event of a topic jump.

{ewc TSTOOLS, Tsbutton,"Return"[Macro=Back()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

TsPane

TsPane allows the author to keep track of and display information in an embedded pane. It can be used to
keep score, tracking progress etc.

{ewc TSTOOLS, TsPane, "demopane"[Name=calcdemo][Font="Times New Roman"/S12/B4][Text="This is a
variable number:',"demopane’,’.'[[Color=255,255,128,255,0,0][Macro=TsInfobox(3, TsPane Demo',”',;” TsPane
allows the author to send information',” to embedded panes in the title such as scoring or
progress.',255,255,128,"") [/w170/h18}

Click here to increment count by 3
Click here to decrement count by 2

{ewc TSTOOLS, Tsbutton,"Return"[Macro=Back()][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

Using TsTimer for Auto/Manual Demos

This is the first of six screens in a "simulated"” demo. It will run automatically unless the
"interactive" button is selected. Then it will not jump until the browse button is pressed,
or "self running" button is selected.

(let it run through once first !)

Create Award Winning Displays
{ewc MVMCI2, ViewerMCI, [device AVIVideo][autostart][looping][noframe][share AVI]!ribbon.avi}

This is the third Timer Demo Screen

STEPS TO IMPROVE Your Health

Slide Shows/Kiosks

{ewc MVMCI2, ViewerMCI, [device AVIVideo][autostart][looping][noframe][share AVI]!glight.avi}
Screen$S

TouchSend Consulting Services
will your title development.

904-668-6180
Compuserve 76064, 3410

{ewc TSTOOLS, Tsbutton,"Quit Timer
Demo"[Macro=ji(qchPath, FunctionMenu')][Font="Arial"/S11/B4]/W126/H16/B1/D1} {ewc TSTOOLS,

Tsbutton,"Restart as Interactive"[Macro=DeleteMark(auto');ji(qchPath, TsTimerDemo1")]

[Font="Arial"/S11/B4)/W126/H16/B1/D1} {ewc TSTOOLS, Tsbutton,"Restart as Self
Running"[Macro=ji(qchPath, TsTimerDemo1');SaveMark("auto')][Font="Arial"/S11/B4]/W126/H16/

B1/D1}

{ewc TSTOOLS, Tsbutton,"Change to
Interactive"[Macro=TsTimer("',0); DeleteMark("auto');ClosePane(main',"demobutt');PaneID(qchPath,
*dbm>demobutt', 0)][Font="Arial"/S11/B4]/W126/H16/B1/D1}

{ewc TSTOOLS, Tsbutton,">>"[Macro=TsTimer("',0);next()][Font="Arial"/S11/B4]/W126/H16/B1/D1}
{ewc TSTOOLS, Tsbutton,"Change to Self

Running"[Macro=TsTimer("',0);SaveMark(auto');ClosePane('main',"”demobutt');PaneID(qchPath,
‘dba>demobutt’, 0);Next()][Font="Arial"/S11/B4]/W126/H16/B1/D1}

Tsbutton

The Tsbutton is an embedded clickable button which when clicked, submits a command or string of
commands to Viewer. The author has complete control over the Placement, Size, Border, Highlighting,
Font and Text of the Button. Other TouchSend Buttons can display graphics and mixed text and
graphics.

Pane 1 - TsMacro Demo

Pane 2 - TsMacro Demo

Pane 3 - TsMacro Demo

Pane 4 - TsMacro Demo

Pane 5 - TsMacro Demo

Pane 6 - TsMacro Demo

Pane 7 - TsMacro Demo

Pane 8 - TsMacro Demo

Pane 9 - TsMacro Demo

{ewc TSTOOLS, tsbutton,"Continue"[Macro=TsMacro("!tsdemo?2.txt',”")][Font="Arial"
/S11/B5/3-]W113/H18/B1/D2/N}

Pane 11-TsMacro Demo

Pane 12-TsMacro Demo

Pane 13-TsMacro Demo

Pane 14-TsMacro Demo

Pane 15-TsMacro Demo

Pane 16-TsMacro Demo

Pane 17-TsMacro Demo

Pane 18-TsMacro Demo

Pane 19-TsMacro Demo

{ewc TSTOOLS, Tsbutton,"Continue"[Macro=TsMacro("!tsdemoa.txt',""); TsTimer(' TsMacro("!
tsdemo4.txt',""); TsTimer(" TsMacro(" !tsdemo7.txt',""); TsTimer(" TsMacro(" !tsdemo8.txt',”"); TsTimer(" TsMacro("!
tsdemo9.txt',""); TsTimer(" TsMacro(" !tsdemo10.txt',"")',1)',1)',1)',1)',1)][Font="Arial"
/S11/B5/3-]W111/H24/B1/D2/N}

Jeff: this works

TsMacro is submitting
commands in conjunction
with TsTimer

Demo Pane Displayed
During TsMacro Demo

TsMacro Finale

You have just been party to the submission of 2266 characters to the Viewer
Command processor from a single topic entry macro of 221 characters.
TsMacro allows the author to create extensive subroutines which when used
Group Entry Macros as well as the Topic Entry Macros, provide utmost
flexibility as well as saving time and allowing for reusable code.

{ewc TSTOOLS, tsbutton,"Return"[Macro=JI(qchPath, FunctionMenu2') |[Font="Arial"
/S15/B4/3-1W100/H36/B1/D2/N}

1. Stop Smoking...

2. Exercise more vigorously...

3. Lose weight...

TouchSend Tools order form

Phone 904-668-6180

Fax 904-668-5352

CompuServe 73374,2071

Address 1904 Chatsworth Way, Tallahassee, F1 32308

Yes - Send me TouchSend Tools and/or TouchSend Index:

Name:

Attention:
Address:
City:
State: Postal Code:
Phone:

Date :

I have enclosed a cheque for:

TouchSend Tools copies x $279.00
TouchSend Index copies x $129.00
Shipping and Handling $ 7.95

Florida Residents add 7%

Total

____Send Me More Information on Touchsend VbTools, The Visual Basic Version of TsTools

TouchSend is a registered Trademark of TouchSend Corporation used under licence by TouchSend
Management Consulting Inc.

TouchSend Tools are comprised of the tools demonstrated here. TouchSend Index is a Hierarchical Index
Listbox. The Index and the Tools are sold separately. Pricing for TouchSend tools is $279 per
development machine, and $279 for each commercial title. Commercial titles that are updated require
a further payment but not more than once per year. (For example, catalogs that are updated monthly
pay no additional fees). Except for the title fee, there are no runtime charges and no royalties. There
are no additional charges for inhouse use or for noncommerical titles. There are no additional charges
for networks or wide area networks. Please include $7.95 for shipping and handling for each order.
Florida residents add 7% sales tax.

There is no warranty express or implied by or TouchSend Management Consulting Inc.with respect to this
software or any of its contents. The entire and exclusive liability of any nature whatsoever arising from or in
any way related to use of this software shall be limited to a refund of price paid for this software, and shall not
include or extend to any claim for or right to recover any other damages, including but not limited to loss of
profit, loss of any claim , or special, incidental or consequential damages or other similar claims.

ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.

{ewc TSTOOLS, tsbutton,"Continue"[Macro=ji(qchPath, tsfull')][Font="Arial" /S11/B4/3-]W62/H16/B1/D2/N}

{ewc TSTOOLS, tsbutton,"Print"[Macro=Print()][Font="Arial" /S12/B4/3-]W100/H17/B1/D2/N/P-}
{ewc TSTOOLS, tsbutton,"Close"[Macro=CloseWindow(' Touchsnd')][Font="Arial"
/S12/B4/3-1W100/H17/B1/D2/N/P-}

TouchSend Tools Order Form

TouchSend Tools are comprised of the tools demonstrated here. TouchSend Index is a Hierarchical Index
Listbox. The Index and the Tools are sold separately. Pricing for TouchSend tools is $279 per
development machine, and $279 for each commercial title. Commercial titles that are updated require
a further payment but not more than once per year. (For example, catalogs that are updated monthly
pay no additional fees). Except for the title fee, there are no runtime charges and no royalties. There
are no additional charges for inhouse use or for noncommerical titles. There are no additional charges
for networks or wide area networks. Please include $7.95 for shipping and handling for each order.
Florida residents add 7% sales tax.

Yes - Send me TouchSend Tools and/or TouchSend Index:

Name:

Attention:
Address:
City:
State: Postal Code:
Phone:

Date

I have enclosed

TouchSend Tools copies x $279.00
TouchSend Index copies x $129.00
Shipping and Handling $ 7.95

Florida Residents add 7%

Total
__Send Me More Information on Touchsend VbTools, The Visual Basic Version of TsTools

Phone 904-668-6180

Fax 904-668-5352

Address 1904 Chatsworth Way, Tallahassee, F1 32308
CompuServe 73374,2071

TouchSend® is a registered trademark of TouchSend Corporation used under licence by TouchSend
Management Consulting Inc. TouchSend Tools are provided in a dynamic link library running under
Windows 3.1 or greater.

TsMacro Function

The TsMacro Function acts like a subroutine. It submits a string of macros of up to 512 characters without
having to enter a topic or a group. This function effectively overcomes the 512 character limitation of a
topic entry macro or a group macro.

TsPrintAfterJump jumps to a topic, prints the topic and then submits another command to Viewer after the
printing is complete.

TsPrintFromList prints a list of topics. The list can be in baggage or on the disk. Each topic is submitted to
the printer, and then upon completion, jumping to the next topic.

TsPrintGroup prints all of the topics in a Viewer defined group.
TsPrintThenCmd prints the current screen and then submits a command to Viewer after the printing is
complete..

{ewc TSTOOLS, Tsbutton,"Return"[Macro=JI(qchPath, FunctionMenu2')][Font="Arial" /S11/B4]/W62
/H16/B1/D1/N}

The following Screen was initially the opening screen for
this demo of the TouchSend Tools. It opens 4 panes one
at a time using the TsTimer Command and then plays a
video using the TsMCI Command and jumps to what is
now the opening screen. These are capabilities that are
not in "vanilla Viewer".

It was a very exciting opening but the video was built as an
RLE encoded video which was crashing on all sorts of
ATI cards. It is now in Videol but to play it safe it is now
optional. If your machine crashes, don't despair, just start
up again and avoid this button.

TsMCI & TsTimer Demo
Skip Demo: Return to Main Screen

{ewc TSTOOLS, TsPane, "status1"[text="status1'][graphic="!status.dib'[macro=TsVCopyS(status1’,"You
clicked~the status bar '!'); TsTimer(" TsVCopyS('status1',” TouchSend~Status Bar~Cleared

"); TsTimer("TsVCopyS('status1',” A TsPane~Status Bar')',3)',3)][Color=192,192,192,128,0,0]

[Font="Arial" /S11/B5/]//H60/w115/B1/ML6T10/D2/2}

TsWinStyle Demo

To properly use this function in a Main Window, make sure the Menu and Buttonbar are turned off or
this technique is unreliable. Tsbuttons can be used in place if the Viewer Buttonbar

{ewc TSTOOLS, Tsbutton, "Thick Frame" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,0,0,0,0,0,0,1)}/H16/w100/B2/D1/N}

{ewc TSTOOLS, Tsbutton, "Caption Only " [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,0,1,0,0,0,0,1)]/H16/w100/B2/D1/N}

{ewc TSTOOLS, Tsbutton, "No System Menu" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,1,1,1,0,1,1,0)[/H16/w100/B2/D1/N}

{ewc TSTOOLS, Tsbutton, "Thin Frame" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,1,0,0,0,0,0,0)}/H16/w100/B2/D1/N}

{ewc TSTOOLS, Tsbutton, "No Styles" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,0,0,0,0,0,0,0)}/H16/w100/B2/D1/N}

{ewc TSTOOLS, Tsbutton, "Min/Max Off" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,1,1,1,1,0,0,0)}/H16/w100/B2/D1/N}

{ewc TSTOOLS, Tsbutton, "All Styles On" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,1,1,1,1,1,1,0)[/H16/w100/B2/D1/N}

{ewc TSTOOLS, Tsbutton, "Close this Window" [Font="Times New Roman"/S11/B3/3-] [Macro =
closewindow("third"))/H16/W100/B2/D1/N}

Ts Buttons - Graphic Options

TsButtons Graphic Options allow the display of three bitmaps: up, down and disabled. Click the disable switch
button then look at the Yellow Switch.

{ewc TSTOOLS, Tsbutton,"Disable Switch"[Macro=TsDisableButton("OnOff');MasterNSR Color("main', 128,0,0)]
[Font="Arial" /S11/B4]/W84/H20/B1/D2/N} {ewc TSTOOLS, Tsbutton,"Enable
Switch"[Macro=TsEnableButton('OnOff");MasterNSRColor(*main', 128,128,0)][Font="Arial"
/S11/B4]/W84/H20/B1/D2/N}

{ewc TSTOOLS,Tsbutton,"Close
"[Macro=ClosePane('main',” graphbut');PaneID(qchPath, switchoff>swonoff',0);MasterNSR Color('main',
0,0,0); TsEnableButton(*OnOff')][Font="Arial" /S11/B4]/W168/H20/B1/D2/N}

The Commercial Version

In the commercial version of TsTools, the author can cause a button "click event" from an accelerator key.
To activate the "Medium" button without using the mouse, try using the "Alt M" key.

{ewec TSTOOLS,Tsbutton,"Close"[Macro=ClosePane('main', graphbut')][Font="Arial"
/S11/B4/3-]/W100/H18/B1/D2/N}

{ewc TSTOOLS, tsbutton,"Return to Menu"[Macro=ji(qchPath, functionmenul')][Font="Arial"
/S11/B4/3-]W100/H36/B1/D2/N}

{ewc TSTOOLS, TsButton, "The TouchSend Index Demo"[graphic="!tsrrup.dib', !tsrrdn.dib', !tsrrdi.dib'/AL]
[macro=JumpID(tstools>indexdem', ‘indexdem')] [Font="Times New Roman" /S9/B4]/H20/w140/B1/D1/AR/MRS} {ewc TSTOOLS, TsButton,
"Return"[graphic="!tsrrup.dib', !tsrrdn.dib', !tsrrdi.dib'/AL][macro=MasterSR Color('main',
0,0,0);CloseWindow("indexdem');JumpID(tstools>main', “tsfull')] [Font="Times New Roman" /S9/B4]/H20/w140/B1/D1/AR/MR5}

The TouchSend Index

The Index comes with the TouchSend Builder. The TouchSend Builder will parse all of a
project's rich text format files as well as the compiled title and then create the table lookups
necessary to build and store the index for a title. The index is completely author
definable. Press the The TouchSend Index Demo Button for an example of the TouchSend
Index.

No title should be without one.

TouchSend Index is a Hierarchical Index Listbox. The Index and the Tools are sold separately. There
are no runtime charges. For Commercial use, cach copy of TouchSend Tools and TouchSend Index is
licenced for a single title. For Publishers with significant numbers of titles, volume discounts are available.
For Non Commercial Use, each copy of TouchSend Tools and TouchSend Index is licenced to a
authoring/development single machine (just like your wordprocessor etc.) but the DLL can be used for any
number of non commerecial titles and inhouse publications with no further charges.

{ewc TSTOOLS, tsbutton,"Search"[Macro=PopuplID(qchPath, ‘indexmsg')][Font="Arial"
/S11/B4/3-]W100/H16/B1/D2/N} {ewc TSTOOLS, tsbutton,"Sync"[Macro=PopupID(qchPath, "indexmsgl")]
[Font="Arial" /S11/B4/3-]W100/H16/B1/D2/N} {ewc TSTOOLS,
tsbutton,"Close"[Macro=CloseWindow(indexdem')][Font="Arial" /S11/B4/3-]JW100/H16/B1/D2/N}

@ Intraduction

@ Chapter 1
Chapter 2

':'E@ Part 1
e

Part 2 The TouchSend Index

@ Gt e e
(& chapter 4 '

(12 part 1
Summary
@ Topic1
@ Topic2 -With a long description included
@ Topica

@ Topicd

@ Topics

@ part 2

The TouchSend Index is not operative for this demo

The TouchSend Synchornize Button is not operative for this demo

TouchSend Consulting Services
904-668-6180 Compuserve 76064,3410

TouchSend specializes in the following:

Training developers/authors in innovative ways to use Viewer 2.0 to create satisfying titles,
including electronic publishing, textbooks, catalogues, interactive demonstrations, tutorials,
corporate policies & procedures, statutes & regulations, and educational material.

Developing migration and conversion strategies for existing hard copy and electronic media. For
example, converting existing textbooks from desktop publishing format to Viewer format on an
automated cost effective basis or converting banking/insurance corporate policy/procedure manuals
to electronic format.

Designing databases that will automatically create, maintain and update material as well as
autogenerate and update hypertext links and jumps.

Custom programming of Viewer and Winhelp extensions (such as the TouchSend Tools) and
interfacing of Viewer data with other Applications (both Windows and non-Windows).

Developing corporate strategies for electronic publishing, electronic sales and presentation tools, as
well as kiosks, electronic catalogues and CD Rom Development.

{ewc TSTOOLS, tsbutton,"Print"[Macro=Print()][Font="Arial" /S11/B4/3-]W100/H18/B1/D2/N/P-} {ewc
TSTOOLS, tsbutton,"Close"[Macro=CloseWindow(' Touchsnd')] [Font="Arial"
/S11/B4/3-]TW100/H18/B1/D2/N/P-}

LAST
{ewc TSTOOLS, Tsbutton,"Demo"[Macro=][Font="Arial" /S11/B4]/W62 /H16/B1/D2/N}

Functions included in TstoolsW.dII:
(licenced for noncommercial use only) - click each for documentation

TsAbsolute
TsButton

TsCopyString
TsWrite Functions

TsHelpContext
TsinfoBox

TsSaveBaggage
TsToolslInit

TsYN

Make sure you read these:
TsTools Commercial Version
Order Information

Licence and Support Information
Did you Crash after making a button and other problems

Note: TsToolsW.mvb and TsTools.mvb cannot be run concurrently. Also remember to use rr.txt

Order information

Write Functions included in TstoolsW.dlII:
(licenced for noncommercial use only) - click each for documentation

TsWrite
TsWriteCopy
TsWriteKill
TsWritePaste
TsWritePos
TsWriteSetZ

TsToolsW.DLL is licenced only for noncommerical use. Use in any commercial software of any
kind is expressly prohibited.

There is no warranty express or implied by or TouchSend Management Consulting Inc. with respect to
this software or any of its contents. The entire and exclusive liability of any nature whatsoever arising
from or in any way related to use of this software shall be limited to a refund of price paid for this
software, and shall not include or extend to any claim for or right to recover any other damages,
including but not limited to loss of profit, loss of any claim , or special, incidental or consequential
damages or other similar claims.

ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED.

This version of TsToolsW.DLL is not officially supported. Use it at your own risk. However if you
have questions, please feel free to send email to Compuserve 73374,2071 and we will do the best we
can to help you out.

{ewc TSTOOLS, Tsbutton,"Return"[Macro=MasterSRColor('main', 0,0,0);CloseWindow(returnrm"); Back()]
[Font="Arial" /S12/B4/3-] W100/H32/B1/D2/N}

=215 TsTools Demo Credits:

TsTools Design
& TsTools Demo

Programming

Voice

Voice Audio
Animation
Visual Basic

Jeff Kovitz
David Stidolph

John Summers
Green Vine Media
Jeff Strickland
JLK Technology

904-668-6180

904-574-3400
904-421-1878
904-893-8469

You pressed Yes !

You pressed No !

{ewc TSTOOLS, Tsbutton, "Hug Me" [graphic="!babyup.dib'," !babydn.dib'," Ibabyup.dib'][name=hugme]
[macro=tshidebutton(*hugme',0,0,0)][Font="Times New Roman" /S10/B4/1]/B0/DO/MT60}

{ewc TSTOOLS, Tsbutton,"Print"[Macro=Print()][Font="Arial" /S12/B5] /W80 /H20/B2/D1} {ewc
TSTOOLS, Tsbutton,"Return"[Macro=MasterSRColor('main', 0,0,0);JI(qchPath,” TSFull')][Font="Arial"
/S12/B5] /W80 /H20/B2/D1}

The TouchSend Tools directory on this CD ROM consists of the following:

tstools.mvb This demo of TouchSend Tools

tstools.dll The DLL to run the demo (it will only run with the demo)

tshelp.hlp A help file used in the demo

tshelp1.hlp A help file used in the demo

tstoolsw.mvb The help and how to Viewer Title for the tstoolsw.dll

tstoolsw.dll The TouchSend Tools working sampler DLL provided with this Book.
readme.txt A DOS text version of this screen.

IT.tXt The function declarations to be inserted in the configuration section of the MVP

file for the TsToolsW.DLL functions. Because these declarations are so "fussy"
ie "i"is not the same as "l" and "u" is not the same as "U", it is recommended
that the entire file be pasted into the config section even if you aren't using some
of the functions. It can save hours of frustration trying to figure out why
something doesn't work. Click here to view rr.txt

order.txt A DOS text order form for TsTools. Click here to view order.txt

Last minute notes:

We have also noted that if two buttons are created that autosize to text and one has lower case and
one has upper and lower case, they will not be the same height. The fix (it will be fixed in the next
build of the DLL) for TsToolsW.DLL is to ensure that all buttons are the same case mix or to author
specify the width and height.

We have also found that running in 1024x768 or 800x600 with large fonts caused the menu buttons
on the opening screen to be pushed out of view. Please change to normal font or 640x480.

The tstoolsw.dll enclosed is a full working version of the following functions:

TsToolslInit must be the first function called in the configuration script of the MVP file ***or
none of the other functions will work***. TsToolslInit initializes the
TsToolsW.DLL and creates an ini file in the Windows directory that is used by
TsToolsW.DLL. The author controls the name of the ini file. It is **strongly**
recommended that each title have a different ini name.

TsAbsolute Viewer device-independent measurements map position values into a 1,024-by-
1,024 grid. At run time, these measurements are converted to device-specific
coordinates using a scaling ratio appropriate to the display device. For example, in
640-by-480 video mode, a device-independent measurement of 512 (specified for
the X or Width parameters) would be converted to a pixel measurement of 320 (512
x (640/1024)). For the Y and Height parameters, the same value would produce a
pixel measurement of 240 (512 x (480/1024)). TsAbsolute(0) will cause
TsButtons to be mapped to a device independent 1024x1024 grid. TsAbsolute(1)
[the default if not called] will ensure that whatever pixel coordinates are specified
will be reproduced on the screen.

TsCopyString copies a specified string to the clipboard.
TsHelpContext calls context sensitive help from Viewer.

TsinfoBox creates a 3 line "about" or dialog box. The author has control over the text in the

TsSaveBaggage

TsWrite

TsWriteCopy
TsWriteKill

TsWritePaste
TsWritePos
TsWriteSetZ
TsYN

title bar, 3 lines of text in the dialog box and the color of the dialog box.

copies a specified file from baggage to a file on the hard disk. Storing files in
baggage is extremely useful and this function provides a way to retrieve stored
files. By making careful use of this command together with marks, an author can
extract a file that is appropriate for the current user. As an example, if the author
wants to illustrate a point using a spreadsheet file, the function can extract a Lotus,
Excel or Quattro Pro file dependent on the user's selected spreadsheet preference
and the others never clutter the users disk or create conversion/confusion problems.
calls Write.exe and using the other Write functions, allows the author to manipulate
write from Viewer.

calls Write.exe and allows the user copie highlighted material to the clipboard.

will close Write after opened with TsWrite.

will paste the contents of the clipboard into Write

will set the screen position of Write after it has been opened using TsWrite

will set the screen "z order" of Write after opened with TsWrite.

creates an about box with yes and no buttons. It has all of the same capabilities as
TsInfoBox but as well will submit a command to Viewer based on the button
pressed.

Note: Clicking on each function name will cause a jump to the syntax screen for that function.

The TsWrite function set is a Write.exe specific group of functions that emulates the TsExec functions
(which do the same thing for virtually any Windows application) but limited to work just with Write.
The TsWrite functions illustrate one of the challenges of hypetext multimedia delivery systems, namely:
once an author hands data to a user: he or she wants to be able to do something with it. These tools
and the TsExec functions are designed to fulfill those needs.

Windows allows an author to manage and use multiple applications to manage and manipulate
information. This will become more apparent and even easier with the release of Windows 4.0 (now
code named "Chicago" by Microsoft).

The TsToolsW.DLL also includes a subset of the functions available in the commercial version of the
TsButton embedded pane.

TsButton allows the author to create buttons in embedded panes in Viewer. This tool provides the
author with ultimate flexibility in creating exciting titles with a custom look and feel.

The following TsButton capabilites are provided in TSTOOLSW.DLL:

autosizing to text

use of any font available on the users system at any allowable pixel size
control over height and width

control over border and depth

control of italics, underline, bold and overstrike text display

control over text alignment and margins

notching

angled text
xy start location of text
attaching Viewer command strings to any button

The following functions available in the commercial version of TsButton are not included in

TSTOOLSW.DLL:

the ability to disable the button
3 dimensional looking fonts
the ability to inhibit printing of the button

the ability to hide/restore the button
multiline text buttons

the ability to place graphics on the button
the ability to click the button by function call.
mouse enter and mouse leave events.

A full description of TsTools can be found by selecting the TsToolsW Online section of this title, and
then selecting "TsTools Commercial Version". All of the functions (at press time) are fully described.
We did not repeat any of the information relating to TsButtons which are clearly documented under the
heading "TsButtons"

Note: If you don't have time to click through the entire demo, please make sure you select the "don't
miss" button on the button bar in the TsToolsW Online section.

Special note regarding TsButtons

Viewer creates embedded panes by looking for {ewx....} as a structure in a rich text format file
(where the x is either an "1","c" or an "r"). If there is an extra curly bracket in the line, usually
Viewer will crash. Don't despair. Also because of the myriad of authoring control provided
with TsButton, it is easy to make a mistake in the switch syntax. TouchSend has put extensive
error checking in to deal with those issues, but occasionally Viewer will crash if your syntax is
wrong, or alternatvely the button won't draw as you have intended. Check your button syntax
carefully (not always as easy to do as to say !!).

The commercial version of TsTools has an authoring tool to create buttons and manage the syntax.
If you have any questions we will be happy to answer them, but only via Compuserve 73374,2071.

Orders for the commercial version of TsTools can be placed via Compuserve or via phone 904-668-6180
or by fax at 904-668-5352. Payment must be by cheque in advance of delivery.

to TouchSend Tools c/o 1904 Chatsworth Way Tallahassee, Florida 32308. The TsTools set offer
through this book also contains the source files for this demo (not the bitmaps or avi's though) which
exhaustively show the techniques used to create this demo. Make sure you mention that you want the
Waite Group version to ensure that the source code is sent. In order to examine the mvp file used to
create this demo, click here.

Pricing for TouchSend tools is $279 per development machine, and $279 for each commercial title.
Commercial titles that are updated require a further payment but not more than once per year. Except
for the title fee, there are no runtime charges and no royalties. There are no additional charges for
inhouse use or for noncommerical titles. There are no additional charges for networks or wide area
networks. Please include $7.95 for shipping and handling for each order. Florida residents add 7%
sales tax.

TouchSend ® is a registered trademark of TouchSend Corporation used under licence by TouchSend
Management Consulting Inc. TouchSend Tools are provided in a dynamic link library and will run under
Windows 3.1 or greater.

Click here for licence information and warranty limitations.

{ewc TSTOOLS,TsButton,"Return to ~Readme. "/AR/ML30R3/H40/W110/B2/D1/N/2 [name=returnrm]
[graphic="!tsblgoup.dib', !tsblgodn.dib', !tsblgodi.dib'/ALC]
[macro=ji(qchPath, rrreturn');Close Window(returnrm')][Font="Times New Roman"/S13/B4/3-]}

{ewc TSTOOLS,TsButton,"Return to ~Readme. "/AR/ML30R3/H40/W110/B2/D1/N/2 [name=returnrm]
[graphic="!tsblgoup.dib', !tsblgodn.dib', !tsblgodi.dib'/ALC]
[macro=ji(qchPath, returntm');CloseWindow(' returnrm')][Font="Times New Roman"/S13/B4/3-]}

{ewc TSTOOLS,TsButton,"Return to ~Readme. "/AR/ML30R3/H40/W110/B2/D1/N/2 [name=returnrm]
[graphic="!tsblgoup.dib', !tsblgodn.dib', !tsblgodi.dib'/ALC]
[macro=ji(qchPath, buttonrtn2');Close Window(returnrm')][Font="Times New Roman"/S13/B4/3-]}

{ewc TSTOOLS,TsButton,"Return to ~Readme. "/AR/ML30R3/H40/W110/B2/D1/N/2 [name=returnrm]
[graphic="!tsblgoup.dib', !tsblgodn.dib', !tsblgodi.dib'/ALC]
[macro=ji(qchPath, buttonrtn1');Close Window(returnrm')][Font="Times New Roman"/S13/B4/3-]}

{ewc TSTOOLS,TsButton,"Return to ~Readme. "/AR/ML30R3/H40/W110/B2/D1/N/2 [name=returnrm]
[graphic="!tsblgoup.dib', !tsblgodn.dib', !tsblgodi.dib'/ALC]
[macro=ji(qchPath, buttonrtn0');Close Window(returnrm')][Font="Times New Roman"/S13/B4/3-]}

Purpose: Displays a clickable button in an embedded pane. The author has control of the text, size, font, and
shading of the button. On clicking the button, it will submit a command or string of commands to Viewer.

Syntax:

texton font name and switches
dll name hution and including hold, italic eic

| | T
{e'-.ﬁl.fx tatodlsw, TsEIIuttn:nn, "Text" [Macrc':c:n:immand] [Fn:nr1t="xx><"Isw'rtn:hes]Iswl'rtc:hes}

mhedded hutton class commands tohe 7 -
T commahd Submitied bution size, shading

This is a typical button:
{ewx TSTOOLS, Tsbutton, "Clic&k Me"[Name=clickme] [Macro=TsInfoBox(2, TouchSend Textbuttons',” This Dialog Box
was created using TsInfoBox.'," This command was executed from a TouchSend Text Button.',” Press each of the
buttons on the right for lots of info.',0,255,0,™)] [Font="Arial" /S11/B4]/H24/W100/B1/D2}

*kk .

Which results in***

{ewc TSTOOLS, Tsbutton, "Clic&k Me"[Name=clickme][Macro=TsInfoBox(2, TouchSend
Textbuttons'," This Dialog Box was created using TsInfoBox.',” This command was executed from a
TouchSend Text Button.',"Click the buttons to the right for more information.',0,255,0,™")][Font="Arial"
/S11/B4]/H24/w100/B1/D2}

Note that the "click me" button can also be

activated by the "Alt K" key by making use of

the TsPressButton Function which is attached

to the "Alt K" key with the AddAccelerator() function.

The embedded pane statement has the following syntax:

{ewX DLL-name, window-class, author-data}

The {ewc} statement positions the object as if it were the next character in the line, aligning it on the base line
and applying the current paragraph properties. The {ewl} statement positions the object at the left paragraph
margin. The left paragraph indent specifies where the object sits in relation to the border of the master pane,
regular pane, or popup. The {ewr} statement positions the object at the right paragraph margin. The right
paragraph indent specifies where the object sits in relation to the border of the master pane, regular pane, or
popup.

Note: The maximum length of this statement (including braces) is 1,023 characters.

The embedded pane statement has the following syntax:

{ewx DLL Name, Button Class,commands and parameters}

DLL Name:
Purpose: Specifies the name of the DLL that controls the embedded pane. The filename should not

include an extension or be fully-qualified, but it can include a relative path. Viewer
assumes .DLL or .EXE to be the default extension. In this case the name is "TsTools"

Button Class:

Purpose: The button class is the name of the button called from the DLL. In this case the button class is
"TsButton™.

Commands are strings specifying a command or commands to run if the condition is true/false. To
specify multiple commands, insert a semicolon (;) between each command. If the
command(s) contain string parameters, use single open quotes (') and close quotes ()
to delimit the string parameters. If the commands contain paths, use double
backslashes (\\) or single forward slashes (/) to represent each backslash in the path.
The total length of a Viewer command string cannot exceed 512 characters unless
TsMacro is used.

Why Pixels for Fonts and not Points ?

Points and pixels approximately the same but not quite.
All TsButtons are created by using pixel measurements.

By using pixels for font size, the author has exact control
over the look of the button and the size of the text relative
to the size of the button.

Switches for the Font Properties are:
"Font Name optionally using & and ~"IS#/B#/D#/1#/U#/O#/A#/ where

The Font Name must be in quotes and must be found on the system. If the font is not found the font will be
helvetica 8 point. Using the & in the text string will underline the next character. Multiline text and 3D effects
are not included in the TsToolsW.DLL.

is the font size in pixels

is the font weight (0-9) - with 4 being normal

(some fonts only support weights of 4 and 7)

Italics on (1) or off - no entry or (0)

Underline on (1) or off - no entry or (0)

Overstrike on (1) or off - no entry or (0)

is for angle in 10ths of a degree with 0 straight right, 900 being vertical
See: X andY switches in button properties re text starting location with angle switch
See: Attribute Examples (buttons on right) for samples.

[N7

>o0c—

3d effects are not included in TsToolsW.DLL included with this book.

{ewc TSTOOLS, Tsbutton, "Bold 3" [Font="Arial"/S11/B3] /H30/w80/B2/D2} {ewc TSTOOLS, Tsbutton,
"Bold 5" [Font="Arial"/S11/B5] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "Bold 7"
[Font="Arial"/S11/B7] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "Bold 9" [Font="Arial"/S11/B9]
/H30/W80/B2/D2}

{ewc TSTOOLS, Tsbutton, "3d Raised" [Font="Arial"/S11/B3/3+]/H30/W80/B2/D2} {ewc TSTOOLS,
Tsbutton, "3d Raised" [Font="Arial"/S11/B5/3+] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "3d
Raised" [Font="Arial"/S11/B7/3+]/H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "3d Raised"
[Font="Arial"/S11/B9/3+]/H30/W80/B2/D2}

{ewc TSTOOLS, Tsbutton, "3d Inset" [Font="Arial"/S11/B3/3-] /[H30/w80/B2/D2} {ewc TSTOOLS,
Tsbutton, "3d Inset" [Font="Arial"/S11/B5/3-] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "3d Inset"
[Font="Arial"/S11/B7/3-] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "3d Inset"
[Font="Arial"/S11/B9/3-] /[H30/W80/B2/D2}

{ewc TSTOOLS, Tsbutton, "Ital Bold 3" [Font="Arial"/S11/B1/11] /H30/W80/B2/D2} {ewc TSTOOLS,
Tsbutton, "ltal Bold 5" [Font="Arial"/S11/B5/11] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "Ital Bold
7" [Font="Arial"/S11/B7/11] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "Ital Bold 9"
[Font="Arial"/S11/B9/11] /H30/W80/B2/D2}

{ewc TSTOOLS, Tsbutton, "Underline" [Font="Arial"/S11/B4/U1] /H30/W80/B2/D2} {ewc TSTOOLS,
Tsbutton, "Overstrike"[Font="Arial"/S11/B5/01] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton,
"Underline" [Font="Arial"/S11/B7/U1/11] /H30/W80/B2/D2} {ewc TSTOOLS, Tsbutton, "Overstrike"
[Font="Arial"/S11/B9/01/I1] /H30/W80/B2/D2}

{ewc TSTOOLS, Tsbutton, "Angle 450" [Font="Arial"/S11/B3/A450] /H80/W80/x20/y40/B2/N/D2} {ewc
TSTOOLS, Tsbutton, "Angle 900" [Font="Arial"/S11/B5/A900] /H80/W80/x34/y60/B2/N/D2} {ewc
TSTOOLS, Tsbutton, "Angle 1350" [Font="Arial"/S11/B7/a1350] /H80/W80/x60/y60/B2/N/D2} {ewc
TSTOOLS, Tsbutton, "Angle 1800" [Font="Arial"/S11/B9/A1800] /H80/W80/x70/y30/B2/N/D2}

Button properties are controlled by the following switches:
IW#IH#IB#7?7?7?7?/D#IN/ML#T#R#B#IX#IY#IAHV where

w Button width in pixels See Width Examples
H Button height in pixels See Height Examples
B Border width in pixels See Border Examples

where ???? controls which borders are drawn. All borders will be drawn unless any of T(Top);B(Bottom);L(Left);
R(Right) are specified.

D Depth (highlight) width See Depth Examples

N Notched corners See Notch Examples

M Specifies the margin from the outside of the border to the start of text.
...only specify the ones that are required. = See Margin Examples

XY Starting X & Y position for text in the button See XY Examples

A Horizontal or Vertical alignment of text See Alignment examples

Note: - if no switches are specifed, the button wil autosize to and center the text.

{ewc TSTOOLS, Tsbutton, " XY Examples"/AL [Font="Arial"/S11/B4/11] [Macro =
ji(tstools.mvb>second', tsbutlookxy')/H16/W110/B1TRBL/N/D2}

Width Examples:

Width 11
Width 20
Width 30
Width 31
Width 32
Width 100

{ewc TSTOOLS, Tsbutton, "+" [Font="Arial"/S11/B4/11] /[H16/W11/B1/N/D2}

{ewc TSTOOLS, Tsbutton, "+" [Font="Arial"/S11/B4/11] /H16/w20/B1/N/D2}

{ewc TSTOOLS, Tsbutton, "30" [Font="Arial"/S11/B4/11] /H16/w30/B1/N/D2}
{ewc TSTOOLS, Tsbutton, "31" [Font="Arial"/S11/B4/11] /H16/w31/B1/N/D2}
{ewc TSTOOLS, Tsbutton, "32" [Font="Arial"/S11/B4/11] /H16/w32/B1/N/D2}
{ewc TSTOOLS, Tsbutton, "Width 100" [Font="Arial"/S11/B4/I1]

/H16/w100/B1TRBL/N/D2}

Width 200 {ewc TSTOOLS, Tsbutton, "Width 200" [Font="Arial"/S11/B4/11]
/H16/w200/B1/N/D2}
Width 400 {ewc TSTOOLS, Tsbutton, "Width 400"

[Font="Arial"/S11/B4/11]/H16/w400/B1/N/D2}

Width 50 - Height 50 - Border 2 - Depth 3 Notched

{ewc TSTOOLS, Tsbutton, "50x50" [Font="Times New Roman"/S11/B5] /H50/w50/B2/N/D3}

Height Examples:

Height 70 {ewc TSTOOLS, Tsbutton, "Height 70" [Font="Arial"/S11/B4/A900][Macro =
pi(qchPath, buttonh70>button’)/H70/W20/x1/y55/B1/N/D2} Height 200 {ewc TSTOOLS,
Tsbutton, "200" [Font="Courier New"/S50/B4] /H200/W150/B1/N/D2}

Note that the text in the Height 70 example is vertical using the /A900 parameter. (Click the
button...) The syntax of that button is:

{ewx TSTOOLS, Tsbutton, "Height 70" [Font="Arial"/S11/B4/A900] /H70/W20/x1/y55/B1/N/D2}

Border Examples (All using a Depth of /D1):

Border 0 {ewc TSTOOLS, Tsbutton, "Border 0" [Font="Times New Roman"/S11/B5]
/H20/w60/B0/D1} Border 1 {ewc TSTOOLS, Tsbutton, "Border 1" [Font="Times New
Roman"/S11/B5] /H20/w60/B1/D1}

Border 2 {ewc TSTOOLS, Tsbutton, "Border 2" [Font="Times New Roman"/S11/B5]
/H20/w60/B2/D1} Border 3 {ewc TSTOOLS, Tsbutton, "Border 3" [Font="Times New
Roman"/S11/B5] /H20/w60/B3/D1}

Border 4 {ewc TSTOOLS, Tsbutton, "Border 4" [Font="Times New Roman"/S11/B5]
/H20/w60/B4/D1} Border 5 {ewc TSTOOLS, Tsbutton, "Border 5" [Font="Times New
Roman"/S9/B4] /H20/w60/B5/D1}

Controlling Border Sides & Notch (All using /B2)

{ewc TSTOOLS, Tsbutton, "Left On" [Font="Times New Roman"/S11/B5] /H25/w60/B2L/D1} {ewc
TSTOOLS, Tsbutton, "Right On" [Font="Times New Roman"/S11/B5] /H25/w60/B2R/D1} {ewc
TSTOOLS, Tsbutton, "Top On" [Font="Times New Roman"/S11/B5] /H25/w60/B2T/D1} {ewc
TSTOOLS, Tsbutton, "Bottom On" [Font="Times New Roman"/S11/B5] /H25/w60/B2B/D1} {ewc
TSTOOLS, Tsbutton, "Notch On" [Font="Times New Roman"/S11/B5] /H25/w60/B2/N/D1}

Rule: A border will be assumed to be on all sides, but if you specify any one of left, right, top, bottom, you
must specify all the parameters you want on.

Creating a Button Bar (No L & R on every 2nd Button & /D2)

{ewc TSTOOLS, Tsbutton, "You can" [Font="Times New Roman"/S11/B5] [Macro = pi(qchPath, buttonbar')]/H20/W75/B2LRTB/D2}
{ewc TSTOOLS, Tsbutton, "make a button" [Font="Times New Roman"/S11/B5] [Macro =
pi(qchPath, buttonbar'))/H20/W75/B2TB/D2}{ewc TSTOOLS, Tsbutton, "bar in a " [Font="Times New Roman"/S11/B5] [Macro =
pi(gchPath, buttonbar')[/H20/W75/B2LRTB/D2}{ewc TSTOOLS, Tsbutton, "non scrolling" [Font="Times New Roman"/S11/B5] [Macro
= pi(qchPath, buttonbar')/H20/W75/B2TB/D2}{ewc TSTOOLS, Tsbutton, "region" [Font="Times New Roman"/S11/B5] [Macro =
pi(gchPath, buttonbar')}/H20/W75/B2/D2}

Depth (Highlight) Examples (All using a border of /B1):

Depth 0 {ewc TSTOOLS, Tsbutton, "Depth 0" [Font="Times New Roman"/S11/B5]
/H30/w60/B1/D0} Depth 1 {ewc TSTOOLS, Tsbutton, "Depth 1" [Font="Times New
Roman"/S11/B5] /H30/w60/B1/D1}

Depth 2 {ewc TSTOOLS, Tsbutton, "Depth 2" [Font="Times New Roman"/S11/B5]
/H30/w60/B1/D2} Depth 3 {ewc TSTOOLS, Tsbutton, "Depth 3" [Font="Times New
Roman"/S11/B5] /H30/w60/B1/D3}

Depth 4 {ewc TSTOOLS, Tsbutton, "Depth 4" [Font="Times New Roman"/S11/B5]
/H30/w60/B1/D4} Depth 5 {ewc TSTOOLS, Tsbutton, "Depth 5" [Font="Times New
Roman"/S11/B5] /H30/w60/B1LRTB/D5}

Depth (Highlight) Examples (with corresponding borders):

Depth 0 {ewc TSTOOLS, Tsbutton, "Depth 0" [Font="Times New Roman"/S11/B5]
/H30/w60/B0/D0} Depth 1 {ewc TSTOOLS, Tsbutton, "Depth 1" [Font="Times New
Roman"/S11/B5] /H30/w60/B1/D1}

Depth 2 {ewc TSTOOLS, Tsbutton, "Depth 2" [Font="Times New Roman"/S11/B5]
/H30/w60/B2/D2} Depth 3 {ewc TSTOOLS, Tsbutton, "Depth 3" [Font="Times New
Roman"/S11/B5] /H30/w60/B3/D3}

Depth 4 {ewc TSTOOLS, Tsbutton, "Depth 4" [Font="Times New Roman"/S11/B5]
/H30/w60/B4/D4} Depth 5 {ewc TSTOOLS, Tsbutton, "Depth 5" [Font="Times New
Roman"/S9/B4] /H30/w60/B5/D5}

Notch Off Example

{ewc TSTOOLS, Tsbutton, "Depth 0" [Font="Times New Roman"/S11/B5]
/H30/w60/B2/D2}
Notch On Example

{ewc TSTOOLS, Tsbutton, "Depth 1" [Font="Times New Roman"/S11/B5]

/H30/w60/B2/N/D2}
Notching Samples with equal Depth and Borders

Depth 0 {ewc TSTOOLS, Tsbutton, "Depth 0" [Font="Times New Roman"/S11/B5]
/H30/w60/B0/N/DO} Depth 1 {ewc TSTOOLS, Tsbutton, "Depth 1" [Font="Times New
Roman"/S11/B5] /H30/w60/B1/N/D1}

Depth 2 {ewc TSTOOLS, Tsbutton, "Depth 2" [Font="Times New Roman"/S11/B5]
/H30/w60/B2/N/D2} Depth 3 {ewc TSTOOLS, Tsbutton, "Depth 3" [Font="Times New
Roman"/S11/B5] /H30/w60/B3/N/D3}

Depth 4 {ewc TSTOOLS, Tsbutton, "Depth 4" [Font="Times New Roman"/S11/B5]
/H30/w60/B4/N/D4} Depth 5 {ewc TSTOOLS, Tsbutton, "Depth 5" [Font="Times New
Roman"/S11/B5] /H30/w60/B5LRTB/N/D5}

Disabled (Greyed) Text Examples:

{ewc TSTOOLS, Tsbutton, "Button1" [Name=Button1][Font="Arial"/S11/B4] /H16/w80/B1/D2/-}{ewc
TSTOOLS, Tsbutton, "Button2" [Font="Arial"/S11/B4] /H16/w80/B1/D2/-}{ewc TSTOOLS, Tsbutton,
"Button3" [Font="Arial"/S11/B4] /H16/w160/B1/D2/-}

Click here to enable Button1. Click here to disable Button1

The disable switch allows the author to "grey out" and disable a button as its initial state. In the disabled state
the button will not press and any macro that is attached to the button will not be executed . The TsEnable
Command will enable the button and the TsDisable command will disable the button. If a button has the
disabled switch set, make sure that the TsEnable command is issued after any jump to the topic or the
disabled state will be reset by the jump to the topic. (This would even include a JumpKeyword command used

to position the cursor after initial topic entry). Note: Disable capability is not included in the TsToolsW.DLL
included with this book.

Embedded browse buttons, with the “previous” button disabled. Note that this capability allows the author to
emulate the browse buttons capability of Viewer.

{ewc TSTOOLS, Tsbutton, "<<" [Font="Arial"/S11/B4] /H20/w80/B1/D2/-}{ewc TSTOOLS, Tsbutton, ">>"
[Font="Arial"/S11/B4] /H20/w80/B1/D2}

Margins are used to create a "bounding box" for text. This is imperative for mixed text and graphic
buttons and for precisely locating text.

{ewc TSTOOLS, Tsbutton, "Margin is: T15L10R10 No Others Set -all line breaking auto"
[Font="Arial"/S11/B5] /H120/W120/B1/N/D2/MT15R10L10/2} {ewc TSTOOLS, Tsbutton,
"Margin is: T30L20R20 No Others Set - all line breaking auto" [Font="Arial"/S11/B5]
/H120/W120/B1/N/D2/MT30R20L20/2} {ewc TSTOOLS, Tsbutton, "Margin is: TS50L50R5 No
Others Set all line breaking auto" [Font="Arial"/S11/B5] /H120/W120/B1/N/D2/MT50R5L50/2}

{ewc TSTOOLS, Tsbutton, "Margin is: T45L5R10 No Others Set -all line breaking auto"
[Font="Arial"/S11/B5] /H120/W120/B1/N/D2/MT45R10L5/2} {ewc TSTOOLS, Tsbutton,
"Margin is: T5SL10R50 No Others Set - all line breaking auto" [Font="Arial"/S11/B5]
/H120/W120/B1/N/D2/MT5R50L10/2} {ewc TSTOOLS, Tsbutton, "Margin is: T25L.25R25B25
No Others Set -all line breaking auto" [graphic="ltsmup.dib',"ltsmdn.dib', tsmdi.dib'/ALT]
[Font="Arial"/S9/B3] /H120/W120/B1/N/D2/MT25L25R25B25/2}

X & Y Examples:

X10 Y10 X20 Y20 X30 Y30 X40 Y40
{ewc TSTOOLS, Tsbutton, "X:10 Y10" [Font="Arial"/S11/B3] /H80/W70/x10/y10/B1/N/D2}{ewc
TSTOOLS, Tsbutton, "X:20 Y20" [Font="Arial"/S11/B3] /H80/W70/x20/y20/B1/N/D2}{ewc
TSTOOLS, Tsbutton, "X:30 Y30" [Font="Arial"/S11/B3] /H80/W70/x30/y30/B1/N/D2}{ewc
TSTOOLS, Tsbutton, "X:40 Y40" [Font="Arial"/S11/B3] /H80/W70/x40/y40/B1/N/D2}

In the following example: /H80/W80/x10/y10/B2N/D2

X = the number of pixels to the left of the upper left hand corner of the button (10).
Y = the number of pixels down from the upper left hand corner of the button (10).
(See the 10x 10y button above for an example of 10x10).

Note: the X & Y switches are necessary with the Angle switch.
(Press the "attributes examples” button for angle samples).

Purpose:
The /A switch specifies alignment of text on the button. Without the optional alignment switch, text is
centered on the button which is the same as /ACM

Alignment is via the optional switch /A

The alignments are:
H: Horizontal Left (L), Center (C) or Right (R)
V: Vertical Top (T), Middle (M) or Bottom(B)

Text and Alignment Examples

"Centered" {ewc TSTOOLS, Tsbutton, "Centered" [Font="Times New Roman"
/S9/B4]/H30/w70/B1/D1} "Left"/AL {ewc TSTOOLS, TsButton, "Left"/AL [Font="Times New
Roman" /S9/B4]/H30/w70/B1/D1}

"Right"/AR {ewc TSTOOLS, Tsbutton, "Right"/AR [Font="Times New Roman"
/S9/B4]/H30/w70/B1/D1} "Left Top"/ALT {ewc TSTOOLS, Tsbutton, "Left Top"/ALT
[Font="Times New Roman" /S9/B4]/H30/w70/B1/D1}

"Right Bottom"/ARB {ewc TSTOOLS, Tsbutton, "Right Bottom"/ARB [Font="Times New Roman"
/S9/B4]/H30/w70/B1/D1} "Right Top"/ART {ewc TSTOOLS, Tsbutton, "Right Top"/ART
[Font="Times New Roman" /S9/B4]/H30/w70/B1/D1}

"Center Bottom"/ACB {ewc TSTOOLS, Tsbutton, "Center Bottom"/ACB [Font="Times New Roman"
/S9/B4]/H30/w70/B1/D1} "Center Top"/ACT {ewc TSTOOLS, Tsbutton, "Center Top"/ACT
[Font="Times New Roman" /S9/B4]/H30/w70/B1/D1}

Height 70 Demo Button

syntax for this button:

{ewc

tstools,

Tsbutton,

"Height 70"

[Font="Arial"/S11/B4/A900]

[Macro = pi(qchPath, buttonh70>button’)]
IH70/W20/x1/y55/B1/N/D2}

Where:

S11 = font size of 11 pixel height

B4 = weight of 4

A900 = text angle 90 degrees (vertical)
H70 = height of 70 pixels

w20 = width of 20 pixels

x1 = start text 1 pixel from left side
y55 = start text 55 pixels below top
B1 = border width of 1 pixel

D2 = depth (highlight) of 2 pixels

N = notched

Switches for the Font Parameters are:

"Font Name"/S#/B#/D#/1#/U#/O#/A# where

The Font Name must be in quotes and must be found on the system.
If the font is not found the default font is Helvetica 8 point.

S
B

>0o0C—

is the font size in pixels

is the font weight (0-9) - with 4 being normal
(some fonts only support weights of 4 and 7)
Italics on (1) or off - no entry or (0)

Underline on (1) or off - no entry or (0)

Overstrike on (1) or off - no entry or (0)

is for the text angle in 10ths of a degree

eg 0 is normal,900 is vertical 1800 upside down
(the angle switch is used in conjunction

with the X and Y switches)

Ts Macro

The TsMacro Function acts like a subroutine.

It submits a string of macros of up to 512 characters
without having to enter a topic or a group. This function
effectively overcomes the 512 character limitation of a
topic entry macro or a group macro, but using

multiple calls to TsMacro

Here is a handy little trick:
To create a button bar at the bottom of a topic:
1. build the {embedded pane tsbuttons}

2. ensure they are in the nonscrolling region
3. set the non scrolling region to "bottom"

{ewc TSTOOLS, tsbutton,""[name=tsbut][graphic="!tsup.dib', !tsdn.dib', !tsdi.dib']} {ewc
TSTOOLS, tsbutton,""[name=filebut][graphic="!filelup.dib', !file1dn.dib', !file1di.dib']} {ewc
TSTOOLS, tsbutton,""[name=printbut][graphic="!printup.dib'," !printdn.dib'," !printdi.dib']} {ewc
TSTOOLS, tsbutton,""[name=diskbut][graphic="!diskup.dib'," !diskdn.dib'," !diskdi.dib']} {ewc
TSTOOLS, tsbutton,""[name=cutbut][graphic="!cutup.dib’," lcutdn.dib', ! cutdi.dib']} {ewc
TSTOOLS, tsbutton,""[name=clipbut][graphic="!clipup.dib', !clipdn.dib',"!clipdi.dib']} {ewc
TSTOOLS, tsbutton,""[name=clockbut][graphic="!clockup.dib', !clockdn.dib'," !clockdi.dib']} {ewc
TSTOOLS, tsbutton,""[name=facebut][graphic="!faceup.dib', ! facedn.dib', !facedi.dib']
[macro=pi(qchpath, smilemsg')]} {ewc TSTOOLS, tsbutton,""[name=helpbut][graphic="'helplup.dib',"!
helpldn.dib', thelp1di.dib']}

Tsbutton: Graphics

The Button Bar displayed above is a series of TsButtons displaying graphics. By putting the
buttons in the nonscolling region, the author has control over the color and location of the button
bar. Each of the following examples demonstrates control and flexibility that TsButtons deliver to

the author. (There are no commands attached to the buttons except the smile button). Note:
Graphics capability is not included in the TsToolsW.DLL included with this book.

Move Button Bar to Bottom Move Button Bar to Top
BBar on Bottom with Separator BBar on Top with Separator
Black Non Scrolling Region Dk Grey NScrolling Region
Disable Entire Buttonbar Enable Entire Buttonbar
Hide Entire ButtonBar Display Entire ButtonBar

Press Happy Face by Function Call

Put a Vertical ButtonBar in a Pane Floating Tool Bar

{ewc TSTOOLS, tsbutton,""[name=vfilebut][graphic="!vfilelup.dib',"!vfile1dn.dib'," file1di.dib']}
{ewc TSTOOLS,tsbutton,""[name=vprintbut][graphic="!vprintup.dib'," !vprintdn.dib', ! printdi.dib']}
{ewc TSTOOLS,tsbutton,""[name=vdiskbut][graphic="!vdiskup.dib'," ! vdiskdn.dib'," !diskdi.dib']}
{ewc TSTOOLS, tsbutton,""[name=vcutbut][graphic="!vcutup.dib'," 'vcutdn.dib'," !cutdi.dib']}

{ewc TSTOOLS, tsbutton,""[name=vclipbut][graphic="!vclipup.dib'," Ivclipdn.dib', ! clipdi.dib']}

{ewc TSTOOLS,tsbutton,""[name=vclockbut][graphic="!vclockup.dib'," ! vclockdn.dib', ! clockdi.dib']}
{ewc TSTOOLS,tsbutton,""[name=vfacebut][graphic="!vfaceup.dib', Ivfacedn.dib', ! facedi.dib']
[macro=pi(qchpath, smilemsg")[}

{ewc TSTOOLS, tsbutton,""[name=vhelpbut][graphic="!vhelplup.dib'," vhelp1ldn.dib'," Ivhelp1di.dib']}

{ewc TSTOOLS, tsbutton,""[name=ffilebut][graphic="!file1up.dib’," lfile 1dn.dib’, lfile1di.dib}{ewc

TSTOOLS, tsbutton,""[name=fprintbut][graphic="!printup.dib’, !printdn.dib’, !printdi.dib'[{ewc TSTOOLS, tsbutton,"'[name=fdiskbut]
[graphic="!diskup.dib',"!diskdn.dib', Idiskdi.dibT}{ewc TSTOOLS,tsbutton,""[name=fcutbut][graphic="Icutup.dib’, lcutdn.dib',"!
cutdi.dib']}

{ewc TSTOOLS, tsbutton,""[name=fclipbut][graphic="!clipup.dib’,"!clipdn.dib’, Iclipdi.dib'T}{ewc TSTOOLS, tsbutton," [name=fclockbut]
[graphic="Iclockup.dib', Iclockdn.dib’,"Iclockdi.dibT{ewc TSTOOLS, tsbutton," [name=ffacebut][graphic="Ifaceup.dib’," facedn.dib',’!
facedi.dib'][macro=pi(gchpath, smilemsg')]{ewc TSTOOLS, tsbutton,"'[name=fhelpbut][graphic="thelp1up.dib’,"thelp1dn.dib',"!

help1di.dib'T}
{ewc TSTOOLS,tsbutton," About This Toolbar "[name=closeme][macro=TsInfoBox(5, TouchSend ToolBar Demo'," The toolbar
displayed is a stay on top secondary window,',"with 10 tsbuttons - 8 are graphic buttons, 2 are text buttons.',” This floating

toolbar can survive topic jumps.',255,0,0,))/w112/h16}
{ewc TSTOOLS,tsbutton," Close This Toolbar "[name=closeme][macro=CloseWindow(floater')]/w112/h16}

{ewc TSTOOLS, TsButton, "Click the ~Smile Face" [Macro=TsPressButton(vfacebut',500)] [Font="Times New
Roman" /S11/B5]W90/H34/B2/D2/N/2}

{ewc TSTOOLS, TsButton, "Hide 6 buttons"

[Macro=TsHideButton(vfilebut',192,192,192); TsHideButton(vprintbut',192,192,192); TsHideButton(vdiskbut',192,192,
192);TsHideButton("vcutbut',192,192,192); TsHideButton("vclipbut',192,192,192); TsHideButton(vclockbut',192,192,19
2)] [Font="Times New Roman" /S11/B5]w90/H24/B2/D2/N/2}

{ewc TSTOOLS, TsButton, "Redisplay the~6 Buttons"
[Macro=TsShowButton("vfilebut'); TsShowButton("vprintbut'); TsShowButton(vdiskbut'); TsShowButton(vcutbut'); TsSho
wButton("vclipbut'); TsShowButton("vclockbut')] [Font="Times New Roman" /S11/B5]W90/H34/B2/D2/N/2}

{ewc TSTOOLS, TsButton, "Disable ? Button" [Macro=TsDisableButton(vhelpbut')] [Font="Times New Roman"
/S11/B5]W90/H24/B2/D2/N}

{ewc TSTOOLS, TsButton, "Enable ? Button" [Macro=TsEnableButton('vhelpbut')] [Font="Times New Roman"
/S11/B5]W90/H24/B2/D2/N}

{ewc TSTOOLS, TsButton, "Close the ~Vertical ~Button Bar"

[Macro=ClosePane('main', vertbutn');ClosePane('main',"vertcomm');PanelD(tstools>main’,
‘tspanedemo>butnpan2',0)] [Font="Times New Roman" /S11/B5]W90/H49/B2/D2/N/2}

Text and graphics can be combined - either side by side, or text on top of graphics. Note: Multiline text and Graphics
capability and TsButton functions are not included in the TsToolsW.DLL included with this book.

{ewc TSTOOLS, TsButton,"&Printer~Button"/AR/ML24R3T5/H50/W80/B2/D2/N/2 [name=mixprintbut]
[graphic="!yprintup.dib'," lyprintdn.dib', !yprintdi.dib’/ALC][Font="Times New Roman"/S13/B4/3-]}

Disable Button Enable Button Click Button

{ewc TSTOOLS, TsButton,"Printer"/H46/W80/B1/D1/AR[name=xprintbut][graphic="!xprintup.dib',"!
xprintdn.dib'," Ixprintdi.dib'/ALC][Font="Times New Roman"/S16/B4]} {ewc
TSTOOLS,TsButton,"&Test"/ARM/MR3/B1/D2/N[name=showmore][graphic="!tstlup.dib'," !tst1dn.dib',"!
tst1dn.dib'/ALC][Font="Times New Roman"/S16/B&/3+]}

{ewc TSTOOLS, TsButton,"Marble Enabled"/B1/D1/N/[name=marblel][graphic="!marbleup.dib',"!marbledn.dib',"!
marbledi.dib'][Font="Times New Roman"/S11/B6/3-]} {ewc TSTOOLS,TsButton,"Marble Disabled"/B1/D1/N/-
[name=marble2][graphic="!marbleup.dib', !marbledn.dib’,"!marbledi.dib'|[Font="Times New Roman"/S11/B6/3-]}

{ewc TSTOOLS,TsButton,"Yes"/B1/D1/N[name=chitz1][graphic="!chitzup.dib',"!chitzdn.dib'," !chitzdi.dib']
[Font="Arial"/S11/B7/3+]}

{ewc TSTOOLS, TsButton, "Main Screen" [Macro=Ji(qchPath, tsfull')] [Font="Arial" /S11/B7/3-]/H20/w115/B1/D2}
{ewc TSTOOLS, TsButton, "TsButton Contents" [Macro=Ji(qchPath, tsbutton')] [Font="Arial"
/S11/B7/3-]/H20/w115/B1/D2}

{ewc TSTOOLS, TsButton, "Full Summar&y" [Name=summary][Macro=Ji(qchPath, buttonsummary')] [Font="Arial"
/S11/B7/3-][Font="Arial" /S11/B7/3-]/H24/w115/B1/D2}

{ewc TSTOOLS, TsButton, "Embedded Pane" [Macro=ji(qchPath, tsbutewx')][Font="Arial"
/S11/B5/3-)/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "DLL Name &&~ Button Class" [Macro=ji(qchPath, tsbutdll')][Font="Arial"
/S9/B4/3-]/H28/w115/B1/D2/AL/ML4/B1/2}

{ewc TSTOOLS, TsButton, "Font Properties" [Macro=ji(qchPath, tsbutfont')][Font="Arial"
/S11/B7/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Attribute Examples" [Macro=ji(qchPath, tsbutfontattributes')][Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Button Properties" [Macro=ji(qchPath, tsbutlook')][Font="Arial"
/S11/B7/3-)/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, " Width Examples" [Macro=ji(qchPath, tsbutlookwidth')][Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Height Examples" [Macro=ji(qchPath, tsbutlookheight')][Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Border Examples" [Macro=ji(qchPath, tsbutlookborder')][Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Depth Examples" [Macro=ji(qchPath, tsbutlookdepth')][Font="Arial"
/S11/B5/3-)/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Notch Examples" [Macro=ji(qchPath, tsbutlooknotch')][Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Margin Examples" [Macro=ji(qchPath, tsbutiookmargin')][Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "XY Examples" [Macro=ji(qchPath, tsbutlookxy')][Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Alignment Examples" [Macro=ji(qchPath, tsbuttext')][Font="Arial"
/S11/B5/3-)/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Disabled Examples" [Macro=ji(qchPath, tsbutlookgreyed')] [Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Graphics" [name=tfacebut][graphic="!tfaceup.dib', !tfacedn.dib', !tfacedi.dib'/ALC]
[Macro=closepane('main',"butnpane');PanelD(tstools>main’,

“smallbuttonbar>butnpan1',0) ;ji(qchPath, graphicdemo')][Font="Arial" /S11/B7/3-]/H24/w115/B1/D2/ARM/MR10}
{ewc TSTOOLS, TsButton, "Text Graphics"[graphic="!zapup.dib',"1zapdn.dib', !zapdi.dib'/ALC]
[Macro=ji(gchPath,” mixeddemo')][Font="Arial" /S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Button Functions" [Macro=Ji(qchPath, tsbutfunctions')] [Font="Arial" /S11/B7/3-]
[Font="Arial" /S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "TsButton Contents" [Macro=Ji(qchPath, tsbutton')] [Font="Arial"
/S11/B7/3-1/H20/w115/B1/D2}

{ewc TSTOOLS, TsButton, "Graphics" [name=tfacebut][graphic="!tfaceup.dib’, !tffacedn.dib’, !tfacedi.dib'/ALC]
[Macro=Jl(gchPath, graphicdemo')][Font="Arial" /S11/B5/3-]/H24/w115/B1/D2/ARM/MR10}

{ewc TSTOOLS, TsButton, "Bitmap Syntax" [Macro=Ji(gchPath, bitmapsyntax')] [Font="Arial"
/S11/B5/3-]/H24/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Bitmap Placement" [Macro=Ji(qchPath, bitmapplacement')] [Font="Arial"
/S11/B5/3-]/H24/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Text Graphics"[graphic="!zapup.dib', |zapdn.dib',"1zapdi.dib'/ALC]
[Macro=ji(gchPath,” mixeddemo')][Font="Arial" /S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

{ewc TSTOOLS, TsButton, "Mouse Move"[enter=TsVCopyS(status1',"Mouse ENTER event~ triggered
this~message')][Macro=ji(qchPath, mousemove'); TsKillTimer(); TsVCopyS(status1’,”Clicking Mouse
Move~Button triggered~ this message'); TsTimer(' TsVCopyS(status1',"~')',3)][Font="Arial"
/S11/B5/3-]/H20/w115/B1/D2/AL/ML4}

TsVCopyS('varname’, string')

Purpose:

Specifies the bitmaps to be displayed on the face of the button. Note: Graphics capability is not included in
the TsToolsW.DLL included with this book.

A graphics button will display the following:

upbitmap = the bitmap displayed in the initial enabled state
downbitmap = bitmap displayed when the button is clicked
disablebitmap = bitmap displayed when the button is disabled

Note: It is imperative that the palettes for all of the bitmaps in all of the states and buttons be the same or the
buttons will not display properly. This includes any other bitmaps that will be displayed simultaneously.

Without the optional alignment switch, text is centered on the button. If there are no height and width
specifications, the button will autosize to the upbitmap.

The /A switch used with graphics specifies alignment of a graphic on the button. Without the optional
alignment switch, the graphic is centered on the button which is the same as /ACM. If size is not specified,
the button autosizes to the up graphic. Alignment is via the optional switch /AHV where

H: Horizontal Left (L), Center (C) or Right (R)

V: Vertical Top (T), Middle (M) or Bottom(B)

Graphic Placement can also be managed precisely by adding background grey coloring to the graphic to
properly position the acutal displayable graphic precisely. This is especially useful when creating buttons that
have Mixed Text and Graphics.

"Centered" {ewc TSTOOLS, Tsbhutton, "" [graphic="ltsgup.dib', tsgdn.dib’, !tsgdi.dib']
[Font="Times New Roman" /S9/B4]/H30/w70/B1/D1} "Left’AL {ewc TSTOOLS, TsButton, ""[graphic="!
tsgup.dib'," !tsgdn.dib', !tsgdi.dib'/AL] [Font="Times New Roman" /S9/B4]/H30/w70/B1/D1}

"Right"/AR {ewc TSTOOLS, Tsbutton, ""[graphic="!tsgup.dib’, ltsgdn.dib'," !tsgdi.dib'/AR]
[Font="Times New Roman" /S9/B4]/H30/w70/B1/D1} "Left Top"/ALT {ewc TSTOOLS, Tsbutton,
""[graphic="!tsgup.dib', ltsgdn.dib’, !tsgdi.dib'/ALT] [Font="Times New Roman" /S9/B4]/H30/w70/B1/D1}
"Right Bottom"/ARB ~ {ewc TSTOOLS, Tsbutton, "[graphic="ltsgup.dib', ltsgdn.dib’, !tsgdi.dib'/ARB]
[Font="Times New Roman" /S9/B4]/H30/w70/B1/D1} "Right Top"’/ART {ewc TSTOOLS, Tsbutton,
""[graphic="ltsgup.dib', ltsgdn.dib’, !tsgdi.dib'/ART] /H30/w70/B1/D1}

"Center Bottom"/ACB {ewc TSTOOLS, Tsbutton,

""[graphic="ltsgup.dib', Itsgdn.dib’, ltsgdi.dib'/ACB]/H30/w70/B1/D1} "Center Top"/ACT {ewc
TSTOOLS, Tsbutton, "[graphic="ltsgup.dib'," !tsgdn.dib’, !tsgdi.dib'/ACT]/H30/w70/B1/D1}

The following button control functions are available in the commercial version of TsTools but are not included
in the TsToolsW.DLL included with this book.

TsPressButton: Allows the author to programmatically "click" any TsButton.

TsEnableButton: Will enable a button that has been disabled with the TsDisableButton function.
TsDisableButton: Disables a button.

TsHideButton: Hides a button.

TsShowButton: Make a button visible that has been hidden with the TsHideButton command.

Have a Great Day !!

CreateButton('btn_dtsdocs', "TsToolsW'," JI(qchPath, dtsdocs')');CreateButton("btn_back', *Go Back',

‘Back()");CreateButton("btn_previous', '<<', ‘Prev()');CreateButton("btn_next', *>>",

“Next()');CreateButton("btn_return', ‘Return to Demo',

*JI(qchPath, tsfull');DestroyButton(“btn_dtsdocs');DestroyButton("btn_back');DestroyButton(*btn_p

revious');DestroyButton("btn_next');DestroyButton(*btn_return');hidebuttonbar();DeleteMark(*been
here')");Showbuttonbar()

{ewc TSTOOLS, TsButton, "Print this Summary" [Macro=Print()] [Font="Arial" /S9/B4/3-]/H20/w100/B1/D2} {ewc
TSTOOLS, TsButton, "TsButton" [Macro=Ji(qchPath, tsbutton'); Showbuttonbar()]
[Font="Arial" /S11/B5/3-]/H20/w100/B1/D2}

Font Properties:

Text Font properties that can be authored include Size, Weight, Italic, Underline, Overstrike,
Three Dimensional Look, and Text Angle. Use the & to underline a character and && to have
the "&' character show. 3D buttons are not included in TsToolsW.DLL

Switches for the Font Parameters are:
"Font Name"/S#/B#/D#/1#/U#/O#/A# where

The Font Name must be in quotes and must be found on the system. If the font is not
found the font will be helvetica 8 point.

S is the font size in pixels
B is the font weight (0-9) - with 4 being normal

(some fonts only support weights of 4 and 7)
I Italics on (1) or off - no entry or (0)
U Underline on (1) or off - no entry or (0)
(0] Overstrike on (1) or off - no entry or (0)
A is for angle in 10ths of a degree with 0 straight right
(see XY switches in button attributes section)

Macro(Command) Properties:

The commands that are submitted when the button is clicked include all standard Viewer
commands and any properly registered routines, including all of the TsTools commands.
The syntax is as follows:
[Macro = "command;command;command etc"]
There is a limit of 512 characters unless TsMacro is used.

Name Property: (not included in the TSTOOLSW.DLL)
TsButtons can be given a name which will allow the button to be addressed for the
purpose of programmatically clicking it, hiding it, or disabling it (and thereafter unhiding
it or enabling it).The syntax is as follows:

Graphics Properties: (not included in the TSTOOLSW.DLL)

TsButtons can display 3 graphic states, up, down and disabled, where each of
upgraphic,downgraphic and disabledgraphic is the file name of a bitmap file.

Graphics can be displayed alone, or in conjuction with Text. If size parameters are not
used, the button will size to the size of the upgraphic. It is the author's responsibility to
ensure that the bitmap sizes are the same and that the techniques for offsetting the

"down" bitmap with the appropriate changes in border shading are implemented if
"movement" on clicking is intended.

The disabledgraphic bitmap will only be displayed by calling the TsDisableButton function
or starting in the disabled state.

Graphics can be optionally aligned using the alignment switch /AHL where H -
Horizontal alignment can be L (Left) C (Center) or R (Right) and V - Vertical alignment

can be L (Left), M (Middle) or R (Right), The default value is CC if the alignment switch
is not used.

Button Attributes:

IWHIH#IM?7?7?2?[B#7?7?7?7/NID#IA? ?IX#Y#where

W Button width in pixels
H Button height in pixels
M Text Margin in pixels

where ?7??7? controls which text margins are implemented
no ???? means no margin management. Otherwise specify:
T = Top; B=Bottom
L = Left; R=Right

Examples "/MR10 will mean the text is inset 10 pixels from the right

Examples "/ML10T10 will mean the text is inset 10 pixels from the left and 10 pixels from
the top of the button. Margins are especially useful for multi-line text buttons using the /2
switch with or without the ~ as a line break manager.

B Border width in pixels
where ???? controls which borders are drawn
no ???? means all 4 will be drawn. Otherwise specify:
T = Top; B=Bottom
L = Left; R=Right

N Notched corners
D Depth (highlight) width
A alignment of text on the button

orizontal alignment may be Left, Right or Centered
Vertical alignment may be Top Middle or Bottom

Example: /ALC will left align the text and center it vertically
X starting X position for text in the button
Y starting Y position for text in the button

(these two are necessary if using the /A for angle switch under
in the fonts section of the string to create an approriate start location)

Disabled buttons, disabled button printing, multiline buttons, graphic buttons and mixed text and
graphic buttons are not included in TsToolsW.DLL

Button Functions: (not included with TsToolsW.DLL)

TsPressButton:

TsEnableButton:

TsDisableButton:

TsHideButton:

TsShowButton:

Allows the author to programmatically "click" any TsButton.

Will enable a button that has been disabled with the TsDisableButton
function or started disabled.

Disables a button.
Hides a button.

Make a button visible.

The following TsButton and TsPane mouse move functions are available in the commercial version of TsTools but are not
included in the TsToolsW.DLL included with this book.

Mouse Enter: Submits commands to Viewer upon the mouse moving onto a TsButton or TsPane. This can be
used with most TsFunctions and Viewer Functions. The status bar to the left makes use of the
Mouse Enter Function on the "mouse move" button. Move the mouse over the mouse move
button. Then click it. Then click the status bar.

Mouse Leave: Submits commands to Viewer upon the mouse moving off of a TsButton or TsPane if the TsButton or
TsPane are not clicked. This can be used with most TsFunctions and Viewer Functions.

Watch the area below the picture and the status bar to the left
as the mouse enters and leaves the picture. Then click the picture.

{ewc TSTOOLS, TsPane, "skypic"[graphic="lwinlogo.dib"|[enter=TsVCopyS('skymsg', This is part of the
Windows Logo."); TsKillTimer(); TsVCopyS('status1',"Windows Logo Message~in 2 places')]
[leave=TsVCopyS('skymsg','~"); TsVCopyS('status1’, The TouchSend~Status Bar')]
[Macro=TsVCopyS('skymsg',’~"); TsVCopyS('status1’,’~'); TsInfoBox(2, TouchSend Mouse Move',’
Mouse move allows the author to send’,;” commands when a mouse enters or leaves',” a TsPane or
TsButton.',192,192,192,")][Color=192,192,192,0,0,0][Font="Arial" /S11/B5/]/B0}

{ewc TSTOOLS, TsPane, "skymsg"[text="skymsg'][Color=255,255,255,0,0,128][Font="Times New
Roman" /S12/B6/]//H23/W250/2}

l'._.'i
I~
G - J

Purpose:

Syntax:

Parameters:

To Register:

Manages TouchSend functions to ensure that coordinates are either relative or absolute. For
example the function determines whethe a TsButton specified to be Height 40 and Width 100 is
actually 40x100 pixels no matter what the resolution or 40x100 relative to the display resolution.

Viewer device-independent measurements map position values into a 1,024-by-1,024 grid. At
run time, these measurements are converted to device-specific coordinates using a scaling ratio
appropriate to the display device. For example, in 640-by-480 video mode, a device-
independent measurement of 512 (specified for the X or Width parameters) would be converted
to a pixel measurement of 320 (512 x (640/1024)). For the Y and Height parameters, the same
value would produce a pixel measurement of 240 (512 x (480/1024)). TsAbsolute defaults to
TsAbsolute(1) unless TsAbsolute(0) is called. It is recommended that the author stick to one
case for an entire title and that the call to TsAbsolute be made in the configuration script after a
call to TsToolslInit

TsAbsolute('Integer’)
0 will cause TsButtons to be mapped to a device independent 1024x1024 grid.

1 will ensure that whatever pixel coordinates are specified will be faithfully reproduced on the
screen regardless of the coordinates.

RegisterRoutine('TSTOOLSW', TsAbsolute’, v=i')
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose: Copies the string enclosed in the function to the clipboard. This function is particularly useful in
order to select information and have it available for other applications through the clipboard.
Click here for a quick demo of TsCopyString("Hello Friends'

Syntax: TsCopyString('String’)

Parameters: String is the string to be passed to the clipboard.

To Register: RegisterRoutine("TSTOOLSW","TsCopyString"”,"v=S8")
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose: A function to call and manage Windows Help from inside Viewer. It calls a Windows Help file,
opening at a context id number that has been defined in the help [MAP] section.

Syntax: TsHelpContext(HelpFileName,HelpContextID)

To Register: RegisterRoutine(' TsHelpContext',"v=SU’)
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose: Displays a dialog box with author information. The author has control of the title bar of up to 31
characters), 3 lines of text of up to 50 characters, color control of the dialog box. There are five
available dialog boxes. Authors with resource editors can customize the size, shape, location
and icons in each box.(Make sure that the id's all stay the same). Some of the syles appear
the same, but are at different xy locations or have different frames.

Syntax: TsinfoBox(StyleNo,Title, Text1,Text2,Text3,Color1,Color2,Color3,Commands1)
Parameters:

StyleNo: A number from 1 to 5 specifying the dialog box style. (See examples)

Title The title bar (up to 31 characters) - may be left blank (a null string)

Text1 The first line of text (up to 50 characters) - may be left blank (a null string)

Text2 The first line of text (up to 50 characters) - may be left blank (a null string)

Text3 The first line of text (up to 50 characters) - may be left blank (a null string)

Colors 1,2,3 A digit from 0 to 255
Commands1 String specifying commands to run after clicking "OK" (it may be left blank)

eg: StyleNo 1: TsIinfoBox(1, TouchSend InfoBox Style 1',"This is the first line of text','This is the second line of
text’, This is another line of textbut much longer than the first two',192,192,192,™")

{ewc TSTOOLS, Tsbutton, "StyleNo 1" [Macro=TsInfobox(1, TouchSend StyleNo Style 1',"This is the first line of
text',"This is the second line of text'," This is another line of text but much longer than the first two',192,192,192,™)]
[Font="Arial" /S9/B4]/H20/w60/B2/D2} {ewc TSTOOLS, Tsbutton, "StyleNo 2" [Macro=TsInfobox(2, TouchSend StyleNo
- Style 2'," TouchSend Variables allow the author', to provide feedback to a user including interactive learning,', testing, scoring,
and other useful messages.',0,128,0,™")] [Font="Arial" /S9/B4]/H20/W60/B2/D2} {ewc TSTOOLS, Tsbutton, "StyleNo 3"
[Macro=TsInfobox(3, TouchSend StyleNo - Style 3'," TouchSend Task Functions can turn any Windows Application.', into a task
of Viewer - and provides a user with', the tools to make use of information delivered in a Viewer title.',0,255,255,™)]
[Font="Arial" /S9/B4]/H20/w60/B2/D2} {ewc TSTOOLS, Tsbutton, "StyleNo 4" [Macro=TsInfobox(4, TouchSend StyleNo -
Style 4'," The TsInfobox Function enables the author to',"submit a command to Viewer after the message.',” In this case the
About() command will be submitted.',255,255,0," About()")] [Font="Arial" /S9/B4]/H20/w60/B2/D2} {ewc TSTOOLS, Tsbutton,
"StyleNo 5" [Macro=TsInfobox(5, TouchSend StyleNo - Style 5',"This TsInfoBox is for rent.',"Call 904-668-6180 for further
information.'," TouchSend Consulting can help you fast track your title.',0,255,0,"")] [Font="Arial" /S9/B4]/H20/w60/B2/D2}

To Register: RegisterRoutine("TSTOOLSW","TsInfoBox","v=iSSSSuuuS")
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose:

Syntax:

Parameters:

To Register:

Extracts files from baggage, brings up a common dialog box and allows the user to save the file
to the disk with the name and at the location specified. The author has control over the color
displayed in the common dialog box.

TsSaveBaggage('String’,RNumber,GNumber,BNumber)

String is the name of the baggage file.
Note: Baggage is case sensitive and the case and name must be exact.
Remember this, as it is a common error to overlook it.
RNumber is an integer between 0 and 255
GNumber is an integer between 0 and 255
BNumber is an integer between 0 and 255

RegisterRoutine("TSTOOLSW","TsSaveBaggage","v=Suuu")
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose:

Syntax:

Parameters:

To Register:

Initializes the TsToolsW.DLL and creates an ini file specified by the author, or if the ini file
already exists, makes use of it. **If TsToolslnit is not called as the first function in the
configuration script after all of the register routines, TsToolsW will not work.**. Make sure that
each title authored has a different Ini file name or the title and operation of the TsFunctions will
not be reliable.

TSTools makes use of the created ini file for several actions related to the functions. It is
created and maintained in the Windows directory. TsToolsW.DLL may not need to create and
ini file because of it's limited functionality, but it must be declared in the config call or the DLL
will not work. Don't be alarmed if no ini file is actually created.

TsToolslInit(qchPath,"IniName")
qchPath is the Viewer internal variable referencing the title. The variable is NOT surrounded
by quotes and must be spelled exactly as set out above.

IniName is the a string that is the name of an ini file. The string must follow DOS conventions,
namely not more than 8 characters and the suffix "ini".

RegisterRoutine("TSTOOLSW","TsToolsInit","v=S8S")
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose:

Syntax:
Parameters:

See Also

To Register:

Allows the user to execute a copy of Write.exe and pass information from Viewer to Write via the
clipboard. After write is launched using the function, each subsequent call to TsWrite will bring forward the
existing copy of Write.exe rather than launching a new copy as would be the case with the Viewer
ExecProgram function. Focus can be passed to Write or stay with Viewer. Write can be repositioned using
the TsWritePos command.

TsWrite("String', Zorder, Dependency, Focus)

String is the name of a write file and is optional. If.the file is not a "wri" file, write will ask if you want to
convert the file. This will cause write to reposition. It can be moved back to the default tiled position or
any other position using the TsWritePos command.

Z order is an integer specifying the Z order of Write. See TsWriteSetZ.

Dependency is an integer specifying whether or not write is "dependent" on Viewer or is an independent
application. If an application is dependent, it will maximize and minimize with Viewer and will close when
the Viewer title that called it closes. If it is independent, while Viewer is aware of and can interact with the
application, it will not minimize, restore or close in concert with Viewer. The value 0 is used for an
independent application and the value 1 is used for a dependent application.

Focus is an integer specifying whether or not Write or Viewer obtains focus after TsWrite is called.
Specifying 1 will set focus to Write. Specifying 0 will set focus to Viewer.

TsWriteCopy, TsWritePaste, TsWriteKill, TsWritePos, TsWriteSetZ,

RegisterRoutine('TsToolsW'," TsWrite', v=Siii')
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose: Sends the keystrokes to Write that are the equivalent of Edit Copy. Write will copy to the
clipboard any text that is highlighted or selected.

Syntax: TsWriteCopy()

To Register: RegisterRoutine("TSTOOLSW","TsWriteCopy","v=")
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose: Closes Write after it has been called using the TSWrite function.
Syntax: TsWriteKill()

To Register: RegisterRoutine("TSTOOLSW","TsWriteKill","v=")
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose: Sends the keystrokes to Write that are the equivalent of Edit Paste. Write will paste any text
that is in the clipboard to the Write instance called by the TsWrite function.

Syntax: TsWritePaste()

To Register: RegisterRoutine("TSTOOLSW","TsWritePaste","v=")
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose:

Syntax:

Parameters:

Note:

To Register:

Sets the screen position of Write after calling it with TsWrite.

of the Write window as well as the width and height.

TsWritePos(integerX,integerY,integerW,integerH)

integerX is the x position of the upper left hand corner.
integerY is the y position of the upper left hand corner.
integerW s the width.

integerH is the height.

It sets the upper left hand corner

by passing(-1,-1) for either the XY or the WH pairs, they will remain unchanged from the

previous position.

The resultant size will depend on whether TsAbsolute is set relative or absolute.

RegisterRoutine("TSTOOLSW","TsWritePos","v=iiii"

(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

Purpose:

Syntax:

To Register:

Sets the Z order of Write after it has been executed using TsWrite. There are 4 cases that can
be set using this function:

1 places window at bottom of the z order

0 places at top of z order - keeps its current status (ie if write is set as a top most
type it stays a topmost type and vice versa.

-1 places window above all topmost windows.

-2 places window at the top of all but "topmost windows".
The Z order is akin to the place of a card in a deck of cards. "Topmost" windows are stay on
top windows. That is they will stay on top of other applications even if they do not have focus.

If there are multiple stay on top Windows, This is the same functionality as is used by Windows
applications to stay on top of other applications.

TsWriteSetZ(integer)

RegisterRoutine("TSTOOLSW","TsWriteSetZ","v=i"
(press the register routine button above to copy the RR string to the clipboard)

l'._.'i
I~
G - J

In order to illustrate Z order differences, try each of the example buttons below:

Example 1: Launch Write and set as a topmost window

{ewc TSTOOLS, TsButton, "Example 1"[Macro=TsWriteKill(); TsWrite("',-
1,1,1); TsAbsolute(1); TsWritePos(300,20,300,200)] [Font="Times New Roman" /S9/B4]/H20/w80/B1/D1}

Click your mouse on the title, not Write. Note that even when Write does not have focus (ie the
titlebar is not highlighted) that it does not disappear. This setting makes it extremely useful to
use in conjuction with a title. Then close write. It can be closed using the TsWriteKill()
Function or by closing it from within Write.

Example 2: Launch Write and but do not set as a topmost window

{ewc TSTOOLS, TsButton, "Example 2"[Macro=TsWriteKill(); TsWrite(™*,0,1,1); TsWritePos(0,20,200,200)]
[Font="Times New Roman" /S9/B4]/H20/w80/B1/D1}

Click your mouse on the title, not Write. Note that Write becomes lower in the Z order (ie is
below the title) and disappears from View. Then close write. It can be closed using the
TsWriteKill() Function or by closing it from within Write.

Ff
‘ I J
Purpose: Displays a dialog box with author information. Commands will be submitted to Viewer based upon the
button pressed. The author has control of the title bar of up to 31 characters), 3 lines of text of up to 50
characters, color control of the dialog box. There are five available dialog boxes. Authors with resource
editors can customize the size, shape, location and icons in each box. (Make sure that the id's all stay the

same) Some of the styles appear the same, but are at different xy locations or have different frames.
(Note: Only style no 1 below responds to the yes and no buttons)

Syntax: TsYN(StyleNo,Title,Text1,Text2,Text3,Color1,Color2,Color3,Commands1,Commands2)
Parameters:

StyleNo: A number from 1 to 5 specifying the dialog box style. (See examples)

Title The title bar (up to 31 characters) - may be left blank (a null string)

Text1 The first line of text (up to 50 characters) - may be left blank (a null string)

Text2 The first line of text (up to 50 characters) - may be left blank (a null string)

Text3 The first line of text (up to 50 characters) - may be left blank (a null string)

Colors 1,2,3 A digit from 0 to 255
Commands1 String specifying commands to run after clicking "Yes" (it may be left blank)
Commands2 String specifying commands to run after clicking "No" (it may be left blank)

eg: StyleNo 1: TsYN(1, ¢
line of textbut much longer than the first two', 192,192,192, 'pi(qchpath, ‘yes')' pi(gchpath, 'no')’
{ewc TSTOOLS, TsButton, "StyleNo 1" [Macro=TsYN(1, TouchSend YN Style 1',’ This is the first line of
TsYN Text',’ You can press Yes or No',’ Please do so
now... 1',192,192,192, pi(qchpath, yes')', pi(qchpath, no")")] [Font="Arial" /S9/B4/3-]/H20/w60/B2/D2} {ewc
TSTOOLS, Tsbutton, "StyleNo 2" [Macro=TsYN(2, TouchSend YN Style 2',’ This is the first line of TSYNText',"
You can press Yes or No',’ Please do so now... 1',192,192,192,","")] [Font="Arial" /S9/B4/3-]/H20/W60/B2/D2} {ewc
TSTOOLS, Tsbutton, "StyleNo 3"[Macro=TsYN(3, TouchSend YN Style 3'," This is the first line of TSYN Text',’
You can press Yes or No',' Please do so now... 1',192,192,192,"',"")] [Font="Arial" /S9/B4/3-]1/H20H20/w60/B2/D2}
{ewc TSTOOLS, Tsbutton, "StyleNo 4" [Macro=TsYN(4, TouchSend YN Style 4'," This is the first line of TsYNBox
Text'," You can press Yes or No',’ Please do so now... 1',192,192,192,™',"")] [Font="Arial"
/S9/B4/3-1/H20/w60/B2/D2} {ewc TSTOOLS, Tsbutton, "StyleNo 5" [Macro=TsYN(5, TouchSend YN Style 5',’ This is
the first line of TSYN Text',’ You can press Yes or No',’ Please do so now... 1',192,192,192,","")] [Font="Arial"
/S9/B4/3-1/H20/w60/B2/D2}

To Register: RegisterRoutine("TSTOOLSW","TsYN","v=iSSSSuuuSS")
(press the register routine button above to copy the RR string to the clipboard)

Viewer is very sensitive to the syntax used in embedded panes. If you have authored a TsButton with an
extra "{" or and extra "}", Viewer tends to get confused and may crash. Don't get mad - just go back and
read your embedded pane string. More often than not it is a typing or syntax error. If your button does not
look like you thought it should, make sure that your switches are correct.

If you get the message "cannot display" where you have authored a TsButton, most likely it is because
TsToolsInit has not been called. **If TsToolslnit is not called as the first function in the configuration script
after the registration routines, TsToolsW will not work.** Make sure that each title authored has a different Ini
file name or the title and operation of the TsFunctions will not be reliable. TsToolsW may not create an ini file
but it must still be declared in the function.

If nothing works or some function(s) don't work: check the Register Routines If the syntax is not exactly
precise, the functions/buttons will not work. eg an "i" is not the same as an A"u" is not the same as a
"U". If a function specifies "v=iiii" and you have "v="ii" , it will not work. It is suggested that the rr.txt file be
pasted into your mvp file using Notepad.exe. Then is must be reloaded into the Project Editor. Another
common error is to make changes to an mvp file and then forgetting to reload it into the Project Editor resulting
in the changes being overwritten the next time the Project Editor is saved. Then make sure that TsToolslInit

is called. (see comments above re TsToolslnit)

If you get a message stating that TsToolsW.DLL is damaged: you are probably running the TsTools.MVB
at the same time. Unload it and start again. If you are not running TsTools.mvb, copy a new copy of
TsToolsW.DLL from the CD-ROM to your Windows\System directory.

Still Stumped ? Send email to TsTools on Compuserve: ID 73374,2071 and we will do the best we can to
help you out. Make sure to include your mvp file and the "offending code".

rr.txt is a file on the CD ROM that includes all of the function declarations to be inserted in the
configuration section of the MVP file for the TsToolsW.DLL functions. Because these declarations
are so "fussy" ie "i"is not the same as "I" and "u" is not the same as "U", it is recommended that
the entire file be pasted into the config section of your mvp file even if you aren't using some of the
functions. It can save hours of frustration trying to figure out why something doesn't work.

A copy of RR.txt is also included in baggage of this help file.

Click here to extract a copy of RR.txt to your hard disk

ClipBoard & File Management
Dialog Management
Help Management

If Management

Ini Management

Mark Management

MCI Management
Miscellaneous Functions
Print Management

Task Management
Timer Management
Variable Management
Variable Panes

{ewc TSTOOLS, TsButton, "" [name=m2][macro=ji(qchPath," ContentManagement')]
[graphic="m2up.dib',"m2dn.dib', ylup.dib'[/BO/D0}

{ewc TSTOOLS, TsButton, "" [name=m3][macro=ji(qchPath, DialogManagement')]
[graphic="m3up.dib','m3dn.dib', y 1up.dib']//B0O/D0}

{ewc TSTOOLS, TsButton, "" [name=m4][macro=ji(qchPath,"HelpManagement')]
[graphic="m4up.dib',"m4dn.dib', ylup.dib'[/B0/D0}

{ewc TSTOOLS, TsButton, "" [name=m5][macro=ji(qchPath, IniManagement')]
[graphic="m5up.dib','m5dn.dib', y 1up.dib']/B0O/D0}

{ewc TSTOOLS, TsButton, "" [name=m6][macro=ji(qchPath,"HelpManagement')]
[graphic="m6up.dib',"m6dn.dib', y1up.dib'][/BO/D0}

{ewc TSTOOLS, TsButton, "" [name=m7][macro=ji(qchPath, HelpManagement')]
[graphic="m7up.dib','m7dn.dib',"y 1up.dib']//B0O/D0}

{ewc TSTOOLS, TsButton, "" [name=m8][macro=ji(qchPath,"HelpManagement')]
[graphic="m8up.dib',"m8dn.dib', ylup.dib'[/B0/D0}

{ewc TSTOOLS, TsButton, "" [name=m9][macro=ji(qchPath, HelpManagement')]
[graphic="m9up.dib',' m9dn.dib', y 1up.dib']/B0O/D0}

{ewc TSTOOLS, TsButton, "" [name=m10][macro=ji(qchPath," HelpManagement')]
[graphic="m10up.dib','m10dn.dib'," y1up.dib']//B0/D0}

{ewc TSTOOLS, TsButton, "" [name=m11][macro=ji(qchPath, Hel]pManagement')]
[graphic="m11up.dib','m11dn.dib',"ylup.dib'l/B0/DO0}

{ewc TSTOOLS, TsButton, "" [name=y12][macro=ji(qchPath," HelpManagement')]
[graphic="m12up.dib','m12dn.dib', ylup.dib']//B0/D0}

{ewc TSTOOLS, TsButton, "" [name=y13][macro=ji(qchPath, HelpManagement')]
[graphic="m13up.dib',"m13dn.dib',"ylup.dib'[/B0O/D0}

Not written

Commands are strings specifying a command or commands to run if the condition is true/false. To
specify multiple commands, insert a semicolon (;) between each command. If the
command(s) contain string parameters, use single open quotes () and close quotes (')
to delimit the string parameters. If the commands contain paths, use double
backslashes (\\) or single forward slashes (/) to represent each backslash in the path.
The total length of a Viewer command string cannot exceed 512 characters unless
TsMacro is used.

TsAppendString

TsCopyBaggage

TsCopyString

TsSaveBaggage

TsSaveBaggageAs

TsSaveString

TsSaveTopic

copies and appends a specified string to an existing file.See also TsSaveString.
copies a specified file from baggage to the clipboard.

copies a specified string to the clipboard. Useful to provide syntax to the user. used
in TsTools documentation to copy the current function syntax or the current function
register routine to the clipboard.

extracts a file from baggage and saves it to disk using a file name specified by the
author. Click here for a demo

extracts a file from baggage and opens the save dialog box to allow saving of the
baggage file to disk at a location and with a name as specified by the user.

copies a specified string to a file. Useful to easy access to programs that are using
Viewer as a lookup facility. For example - a parts program running in Foxpro could
use Viewer for context sensitive parts lookup. The user would then navigate through
a Viewer Catalog to get a part number. Click on the part number would save it to a
file. Upon returning to the Foxpro program, it would read the parts in from the file.
The file name is author definable and the text saved can be appended or overwritten at
the author's option.

copies the current topic to a file.

TSInfoBox is a dialog box (select one of 5 styles/size/location) with up to 3 lines of text of 50
characters, an author defined titlebar, and the color of the box definable by the author.

TsYN isa dialog box with all of the same properties as tsinfobox but with two buttons (yes
& no) which submits commands dependent on the button pushed.
TsSelectFile brings up the common dialog box and allows the user to select a file and save the file

and path to an ini entry. It is particularly useful in allowing the user to select a
wordprocessor. Click here for a demo of TsSelectFile

{ewc TSTOOLS, Tsbutton, "Click Here to see the results~of the TsSelectFile Demo"
[Name=clickdemo][Macro=TsExec(Notepad.exe', tstools.ini',"demoselect',-

1,1,1); TsExecPos("demoselect',321,70,310,410); TsDisableButton(clickdemo')][Font="Arial"/
S11/B4]/B1/D2/-12}

The Help Management Functions call context sensitive help and include:

TsHelpContents

TsHelpContext

TsHelpQuit

TsHelpKeyword

TsHelpSearch

TsHelpPopup

calls a help file and opens at the contents screen.

calls a help file, opening at a context id number that has been defined in the help
[MAP] section.

quits the help file unless it has been called by some other application.

displays the topic in the keyword list that matches the keyword passed if there is an
exact match. If there is more than one match, it displays the first topic found. If
there is no match, an error message is displayed.

displays the topic in the keyword list that matches the keyword passed. If there is
more than one match, it displays the Search dialog box with the topics that match. If
there is no match it displays the Help search dialog box.

displays in a popup window the topic identified by a specific context string. The
main Help window is not displayed.

The TsIf Functions incorporate the INI Management capabilities and simplify the authoring of /fThen and
IfThenElse commands by incorporating the IsMark and Not commands. In addition, by using TsGotoMark and
TsDeleteMark in place of the built in commands the warning messages when using undefined marks (or marks that
have been deleted) are eliminated.

TsIfMark This function is the equivalent of IfThen(IsMark(*markname')," Command') but is
shortened and simplified to TsIfMark(*markname',”command').

TsIfNotMark This function is the equivalent of IfThen(Not(IsMark(*markname'))," command') but is
shortened and simplified to TsIfNotMark('markname',"command").

TsIfMarkElse This function is the equivalent of
IfThenElse(IsMark('markname'),’ command',"command') but is shortened and
simplified to TsIfMarkElse('markname','command',"command').

TsIfNotMarkElse This function is the equivalent of
IfThenElse(Not(IsMark(*markname')),’command',"command') but is shortened and
simplified to TsIfNotMarkElse('markname',”command’,’command').

The TsIni Functions are designed to allow titles to be "customized" by the user and to save that information and the
"state" of the title between sessions. As well the ini capabilites are used with TsVariable management. These
functions extend the Viewer mark commands to offer persistance of data between sessions (using the INI file).

TsToolsInit

TsCreatelni
TsDeletelni
TsDeleteIniEntry
TsDeleteIniSection
TsWritelni
TsReadIni
TsWritelniString

TsWriteIniNumber

initializes the TsTools DLL and sets the name of the INI file that is used with the title. If
the INI file exists, it will be used, otherwise it will be created. If TsToolsInit is not
called, the entire dll will not work.

creates an ini file.

deletes an ini file.

deletes an entry from an ini file.
deletes a section from an ini file.
writes a TsVariable to an ini file.
reads a TsVariable from an ini file.
writes a string to an ini file.

writes a number to an ini file.

Mark management allows the author to manage marks in the same manner as the Viewer Marks commands
but the information is also saved to the INI file created as part of the TsInit Function. These marks will
automatically be restored upon the title restarting unless they are cleared with the TsClearMarks function.
Thus, the state of the title can be saved and restored. See also the TsIf Functions.

TsClearMarks clears all marks from the ini file.
TsGotoMark goes to a mark saved in the ini file. Must be used to go to a location after the file is

exited and restarted. The Viewer GotoMark function will not find the mark as it is
not restored to its original location.

TsIsMark tests to see if a mark is in the ini file and in memory.
TsDeleteMark deletes a mark from the ini file and from memory.
TsSaveMark saves a mark to the ini file and to memory.

The TsSaveMark Demo saves the mark "This is a demo mark" to the Tstools.INI file. The
TsDeleteMark Demo then deletes the mark. In each case the Tstools.INI file is displayed in Notepad.
Notepad is called, positioned and displayed using the TsExec and TsExecPos Commands. Click here to
restart Mark Demo

The TsSaveMark Demo saves the mark "This is a demo mark' to the Tstools.INI file. The
TsDeleteMark Demo then deletes the mark. In each case the Tstools.INI file is displayed in Notepad.
Notepad is called, positioned and displayed using the TsExec and TsExecPos Commands.

{ewc TSTOOLS,TsButton,"TsSaveMark~Demo."/AR/ML30R3/H40/W130/B2/D1/N/2 [name=markdemo]
[graphic="!tsblgoup.dib', !tsblgodn.dib', !tsblgodi.dib'/ALC][macro=TsClearMarks();PositionWindow(0, 0, 512,
1024,0, "Main");TsSaveMark(" This is a demo
mark'); TsExecKill("demo1"); TsExec(*Notepad.exe', tstools.ini',"demo',0,1,1); TsExecPos("demo',321,75,310,405);Ts
EnableButton('markdemo1'); TsDisableButton('markdemo');pi(qchPath, markdemopopup>markpop')][Font="Times
New Roman"/S13/B4/3-]} {ewc
TSTOOLS, TsButton,"TsDeleteMark~Demo."/AR/ML30R3/H40/W130/B2/D2/N/2/-[name=markdemo]]
[macro=TsDeleteMark(" This is a demo
mark"); TsExecKill("demo'); TsExec("Notepad.exe', tstools.ini',"demo1',0,1,1); TsExecPos(*demo1',321,75,310,405); T
sEnableButton("markdemo'); TsDisableButton(*markdemo1')][graphic="!tsblgoup.dib', !tsblgodn.dib',"!
tsblgodi.dib’/ALC][Font="Times New Roman"/S13/B4/3-]} {ewc TSTOOLS,TsButton,"End
TsMark~Demo"/AR/ML30R3/H40/W130/B2/D2/N/2 [name=markdemo?2][graphic="!tsblgoup.dib', !tsblgodn.dib',"!
tsblgodi.dib'/ALC][macro=TsDeleteMark(" This is a demo
mark'); TsExecKill("demo1'); TsExecKill('demo");PositionWindow(0, 0, 1024, 1024, 1,
"Main");CloseWindow(markdemo');IfThen(ismark(online'),JumpID(tstools.mvb>returnrm’,
‘returntobtn2')');deletemark(online")][Font="Times New Roman"/S13/B4/3-]}

TsSnd

TsWave

submits a command upon the completion of an mci event. Without this function,
Viewer has no facility for acting upon completion of a wave file or a video. As an
example, the author may present an opening "splash screen" with a vivid graphic and
music and then upon completion of the music desire to jump to a table of contents.
This function could get lost in the mob of descriptions but is extremely important.
This function changes the way Viewer works because it does some thing that most
authors want at one time or another but Viewer does not do, which is respond at the
end of a sound or a video. Another must remember function is TsTimer

tests for a sound device, and then submits a command if a valid sound device is
present, and optionally a different command if a valid sound device is not present.
Without this function Viewer will display an error message if a wave file is submitted
but there is no sound device. As well this function provides the author with an
opportunity to provide an alternate means to communicate if a message was being
delivered by sound. As an example, a voice saying "press any key to continue" could
be replaced with a pane presenting the same information. This function has been a
life saver on a few occasions.

submits a wave file and will continue to play it until it is completed or until it is
stopped by the author. Normally Viewer will stop a wave file if the user jumps to a
different topic.

TsAbsolute

TsClose

TsDebug

TsExitTopic

TsGlobalMacro

TsHideCursor

TsMacro

TsShowCursor

TsResources

TsToolsInit

TsWinStyle

sets the state for drawing TsButtons and TsPanes. The state will either be 640 by 480
(absolute size) or relative on a 1024x1024 grid. By default TsAbsolute is on.

sets a flag that will ensure that the topic.present when a title is exited will be the
startup topic upon reentering the title. This function allows a user to restart at the
exact topic he or she was using at the time of exit.

turns TsTools error message on or off.

submits commands upon exiting a topic. However, Viewer will not reliably execute
all of these commands before executing topic entry commands at the topic jumped to
so care must be taken with authoring to ensure there is no conflict of commands if
Viewer submits them out of order.

executes a command or set of commands upon entering every topic until turned off by
calling TsGlobal Macro with a null string. There can only be one TsGlobal Macro
command string active at one time.

will hide the cursor. This function must be used with care or the cursor will
disappear for the balance of the title. It is often used to remove a cursor from a large
video display to avoid blinking. When used all methods of exit from the topic must
used the TsShowCursor command.

The TsMacro Function acts like a subroutine. It submits a string of macros of up to
512 characters without having to enter a topic or a group. This function effectively
overcomes the 512 character limitation of a topic entry macro or a group macro, by
using multiple calls to TsMacro. The macros to be submitted are placed in "script
files" that are located in baggage or on the hard disk or CDRom.

will restore a hidden cursor.

when called displays the available windows resources. Useful for debugging during
title authoring. It is also helpful if support for TsTools is required as it will tell
support the "state of the title" at a problem location. Click here for TsResources
Demo

initializes the TsTools DLL and sets the name of the INI file that is used with the title.
If the INI file exists, it will be used, otherwise it will be created. If the function is not
called as the first function in the configuration script, none of the TsFunctions,
TsButtons or TsPanes will operate properly.

allows the author to change the style of a window. This function works with both the
main and secondary windows. Click here for a WinStyle Demo

TsWinStyle Demo

To properly use this function in a Main Window, make sure the Menu and Buttonbar are turned off
or this technique is unreliable. If a button bar is desirable, Tsbuttons in the nonscrolling region can
be used in place of the Viewer Buttonbar. Note that "hwndContext" and NOT "hwndApp" must be
passed to the function.

{ewc TSTOOLS, Tsbutton, "Thick Frame" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,0,0,0,0,0,0,1)[/H20/w100/B1/D1/N} {ewc TSTOOLS, Tsbutton, "Caption
Only " [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,0,1,0,0,0,0,1)]/H20/w100/B1/D1/N}

{ewc TSTOOLS, Tsbutton, "No System Menu" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,1,1,1,0,1,1,0)]/H20/w100/B1/D1/N} {ewc TSTOOLS, Tsbutton, "Thin Frame"
[Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,1,0,0,0,0,0,0)}/H20/w100/B1/D1/N}

{ewc TSTOOLS, Tsbutton, "No Styles" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,0,0,0,0,0,0,0)[/H20/w100/B1/D1/N} {ewc TSTOOLS, Tsbutton, "Min/Max
Off" [Font="Times New Roman"/S11/B3/3-] [Macro =
TsWinStyle(hwndContext,1,1,1,1,0,0,0)}/H20/w100/B1/D1/N}

{ewc TSTOOLS, Tsbutton, "All Styles On" [Font="Times New Roman"/S11/B7/3-] [Macro =
TsWinStyle(hwndContext,1,1,1,1,1,1,0))/H20/w100/B1/D1/N} {ewc TSTOOLS, Tsbutton, "Exit" [Font="Times
New Roman"/S11/B7/3-] [Macro = closewindow(third"')l/H20/W100/B1/D1/N/3+}

Viewer doesn't handle printing very well. Due to the inherent limitations of the Viewer print engine, after a
print command is submitted, if the author issues a jump command, more often than not, Viewer prints the
page jumped to rather than the page on which the print command is submitted. TouchSend Tools provides
the following functions to give author complete control over printing from a title. In addition the baggage
extraction functions allow an author to deliver files to the user for printing through standard Windows
applications such as a wordprocessor.

TsPrintAfterJump jumps to a topic, prints the topic and then submits another command to Viewer after

TsPrintFromList

TsPrintGroup
TsPrintThenCmd
TsKillPrint

TsSync

the printing is complete. Click Here for a TsPrintAfterJump Demo

prints a list of topics the list being either in baggage or on the disk, submitting each to
the printer and when complete jumps to and prints the next topic in the list until all
topics in the list are completed.

prints all of the topics in a Viewer defined group.
prints the current screen and then submits a command after the printing is complete.

this function allows the author to kill a printing that has been launched with either
TsPrintFromList or TsPrintGroup.

tests to see if the printer is currently printing. When executed the function will
prevent any other commands in the macro command string from being submitted to
the Viewer engine until the printing of the current topic is completed.

This page was printed using the TsPrintAfterJump Function Call.

This command is a very convenient way to print any kind
of a form, or example page that is separate from the
current topic.

The TsExec task management functions allow for the launching other Windows applications and if specified,
monitor their state. A program can be launched without knowledge of its location or path. The launched
program can be dependent (ie a child of the Viewer title - will minimize or restore with Viewer and
terminate upon termination of the Viewer title) or independent (will reside independent of the Viewer title).
With some limitiations, keystrokes can be submitted to the other application for pasting, executing macros
etc. This suite of commands is extremely useful for managing Visual Basic applications that provide
additional functionality to Viewer but are not designed to be a "Viewer Shell" such as listboxes etc. It is also
very useful for using Word Processors or Spreadsheets in concert with a Viewer title to extract data "on the
fly" optionally with formatting instructions via pasting and then the implementation of macros. Each
application launched by TsExec has a "name" and as such the user can manage and work with multiple
launched applications concurrently.

Click here for a demo of the TsExec Functions

TsExec Executes any Windows Exe file that is available on the system. The function will
search the active path and the [Programs] section of Win.ini to find the executable if it
is not in the current working directory. If the program is still not identified, a dialog
box will pop up to allow the user to select the appropriate executable. TsExec will
also execute a program that has been defined by name in the [Exec] section of the INI
file associated with the TsToolsInit function for that title.

TsExecKill Will shut down an application that has been launched using TsExec.

TsExecState Sets the "state" of any application that has been launched using TsExec. The states
available are Normal, Minimized, Maximized, Show Not Active; Show in its pre
minimized and maximized state and make it the active application; minimized and
active;show minimized;show not active and restore.

TsExecPos Sets the size and position of the executed application. This function acts in a manner
similar to the Viewer PositionWindow command.

TsExecPaste Will paste the current contents of the clipboard into the application launched by
TsExec. This function is not reliable with some applications including Word for
Windows and Ami Pro.

TsExecSendKeys Submits keystrokes to the named application. This function is not reliable with some
applications including Word for Windows and Ami Pro.

TsExecSetFocus Sets focus to an application launched by TsExec.

TsExecSetZ Manages the Z order of any application launched with TsExec. An application can be
set as any one of bottom of the Z order, not a topmost window, a top window or a
topmost window. The Z order can be changed by a further call to this function.

TsExecV Executes any Windows Exe file that is available on the system and has been defined
with a variable alias in an ini file. The variable alias is completely controlled by the
author. For example, using TsSelectFile, an author may have a user chose a default
wordprocessor. TsExecV will then execute the variable "wordprocessor" which in
the ini file would have the following format: wordprocessor=path\executable.exe.

TsViewerSetFocus Returns focus to the Viewer title it has been set to a launched application using
TsExecSetFocus.

Each of the below listed commands will execute when clicked. They demonstrate some of the capabilities
of the TsExec task functions. Note: Before killing the calculator, minimize the title and then restore it - the
calculator has been called as a dependent or child application and will minimize when Viewer does. The
TsCalls Pane just counts the number of times any of these demo functions are accessed. This count can be
saved between sessions altho is is not saved in this demo.

{ewe TSTOOLS, TsPane, "calcvar" [Name=calcdemo][Font=""Times New Roman'/S12/B4][Text="The
calculator number is: ',"calcvar',".'|[macro=TsInfobox(4, TsPane Demo',’ This TsPane is initially set to a
value of 0',” It is then updated by calling TsVPaste which pastes whatever ',;’ variable is on the clipboard

to TsPane.' 255,255,255, ")] [graphic="!panedbig.dib'] [Color=192,192,192,128,0,0]/w200/h30/b1}

{ewc TSTOOLS, TsPane, "countvar"[Name=countdemo][Font="Times New Roman"/S12/B4][Text="Ts Calls:
'countvar',".'][macro=TsInfobox(3, TsTask Counter'," This TsPane is initially set to a value of 0',"It is then updated
by any time any of the',"Hot Spots on this page are clicked.',255,255,255,"")][graphic="!panedemo.dib']
[Color=192,192,192,0,0,128]/w78/h30/b0}

TsExec(calc.exe',”","Calculator',-1,1,1) Bring up the calculator as a stay on top app.

TsExecPos(CCalculator',369,287,-1,-1) Change the Position of the Calculator.
TsExecSendKeys("Calculator',"35*40*52=")Send some keystrokes to the calculator to calculate a number.
TsExecCopy("Calculator') Copy the calculator result to the clipboard.
TsVPaste("calcvar) Paste the contents of the clipboard to “calcvar' in the Tspane shown above.

(Feel free to change the numbers on the calculator

by using it directly -then click the TsExecCopy and

TsVPaste examples to update the TsPane. The

calculator is a "stay on top" application -

see Z order description in TsSetWriteZ

TsExecState("Calculator",2) Minimize Calculator.

TsExecState("Calculator”,1) Restore Calculator.

TsExecSendKeys("Calculator',"%vs'") Set Scientific mode.

TsExecSendKeys(Calculator',"%vt) Set Standard mode.

TsExecKill("Calculator") Kill the Calculator. Paste the Number of Calls

to Notepad

TsTimer

TsKillTimer

Submits a command after the passage of time. TsTimer will be killed in the event of
a jump. Tstimer can be used to do self running demos, or presentations that can be
converted into interactive presentations at any time. They are also great for causing
an action to take place if a user doesn't do something for a given time interval.
(Example:- if a user doesn't select anything for two minutes pop up a menu). Timers
can be embedded to create multiple timer sequences. Like TsMCI it is easy for this
function to get lost in the list. This function changes the way Viewer works because
it does some thing that most authors want at one time or another but Viewer does not
do, which is submit commands to the Viewer engine over time. The beginning
sequence of this title with the 4 panes opening was done with TsTimer. See also the
TsTimer demo in the functions section of this title which illustrates how to use
TsTimer to create time sequenced demos.

Immediately kills any TsTimers that are currently running.

Each of the below listed functions offer programatical control of any TsButton. These functions give the
author complete flexibility and control of the "look and feel” of their Title. As well, TsPressButton
completely overcomes the impression in the Viewer Manual that an embedded pane cannot be attached to an

Accelerator key.

TsPressButton:

TsEnableButton:

TsDisableButton:

TsHideButton:

TsShowButton:

Allows the author to programmatically "click" any TsButton.
Will enable a button that has been disabled with the TsDisableButton function.

Will disable a button. On a text button the text will appear light grey and the button
will not click nor will any attached macro be executed. On a graphics button, the
specified graphic for the disabled state will displayed, the button will not press and any
attached macro will not be executed. On a mixed text and graphics buttons, the
combined effect is implemented.

‘Will hide a button.

Will make a button that has been hidden with TsHideButton, visible.

The TsPane embedded window provides text and variable output within a topic page. Using the TsVariables
capability, the author can keep track of any number of counts, including scores, "first trys", lookups, and the
results can be reported concurrently in the topic page, in a secondary window, popup or pane and can be
updated continuously or as an event. The TsVariables allow for incrementing and decrementing counters.
The Tslni functions allow for the variables to be saved between sessions. The TsMarks functions allow the
author to set and maintain states between sessions (example - beginner,intermediate, expert and have the title
respond accordlingly). See TsPanes for details on display capabilites. See also TsExecV.

The functions are:

TsVAdd increments a TsVariable by an author defined amount.

TsVAppend copies and appends the value of a TsVariable to a file.

TsVCatS concatenates string with the current named TsVariable

TsVCatV concatenates variable with the current named TsVariable and sets total to first named
TsVariable.

TsVCopy copies value of a named TsVariable to the clipboard as text.

TsVCopyS copies a string into a named TsVariable.

TsVCopyV copies a value into a named TsVariable.

TsVITEQ submits a command if a named TsVariable equals the specified value. (This function
does not have automatic like TsVOnCount it only acts if the function is called and the
variable is equal to the specified value at that time).

TsVIfGT submits a command if named TsVariable is greater than specified value (This function
does not have automatic like TsVOnCount it only acts if the function is called and the
variable is greater than the specified value at that time).

TsVILT submits a command if named TsVariable is less than specified value (This function does
not have automatic like TsVOnCount it only acts if the function is called and the variable
is less than the specified value at that time).

TsVIfWithin submits a command to Viewer if within a "range" of the specifiec value (This function
does not have automatic like TsVOnCount it only acts if the function is called and the
variable is within the specified range of the specified value at that time).

TsVOnCount submits a command upon reaching the counter as set without any further function call.
This function "sets" an action to take place when the TsVariable value reaches the count
value by whatever means.

TsVPaste copies text on the clipboard to a named TsVariable.

TsVRandom creates a TsVariable that is a random number.

TsVSave copies the value of a TsVariable to a text file.

TsVSet sets a named TsVariable to a value.

TsVSub decrements a named TsVariable by an author defined amount.

This is an embedded TsPane:

{ewc TSTOOLS, TsPane, "demopane"[Name=calcdemo][graphic="!panestat.dib'|[Font="Arial"/S11/B3]
[Text="This is a status pane - Score: ',"”demopane’,"."|[Color=192,192,192,0,0,0][Macro=TsInfobox(3, TsPane
Demo',”',” TsPane allows the author to send information',” to embedded panes in the title such as scoring or
progress.’,192,192,192,"") 1/w200/h40}

Click here to increment count
Click here to decrement count

The author has control over the following items in creating and managing TsPanes: font, multiple lines, color
of pane and color of text, graphic display in the pane, text to be displayed in the panes and variables that can
be displayed in the panes. The author also has control of height, width, margins, text starting location, text
alignment and whether or not the pane will print. As well a macro can be attached to the pane which will
execute when the pane is clicked. Click it and see.

The Ancillary Pane Functions are:

TsHidePane: Will hide a pane. Click here to hide the pane

TsShowPane: Will make visible a pane that has been hidden with the TsHidePane command. Click
here after hiding the pane to restore it

TsUpdatePane: Forces an update of the current display pane or panes.

TsClose Demo

TsClose has been turned on.
Now close the title from any topic.

Upon restarting this title it will
open at the location it closed.

Note;
It is worth taking the time to click through every TouchSend Function, but it can be a bit overwhelming at first.
The TouchSend Functions will make the most sense after you have read the book and tried the examples.

For a quick look at some of the interesting extensions of TsTools, click the Don't Miss button on the button bar.

{ewc TSTOOLS, Tsbutton, "Hug Me" [graphic="!babyup.dib'," !babydn.dib'," Ibabyup.dib'][Font="Times
New Roman" /S10/B4/1]/B0O/DO/MT60}

Because the entire demo is quite extensive this popup
provides quick access to selected highlights to
illustrate some of the extended capabilities of Viewer
using the TouchSend Tools

Graphics Buttons to simulate a toolbar
Mixed Text & Graphics Buttons
Mouse Move

Pane Management

Selecting a default Wordprocessor
TsExec Demo

WinStyle Demo

Often an author would like a user to be able to select a wordprocessor to use in
conjunction with a title and have the user be able to call it up from thereafter. Here is
how to do it with TsTools:

(click each of the steps below)

1. Call TsSelectFile to select a wordprocessor of choice. For simplicity try selecting
Write or Notepad, although actually any executable file will do. The selected file will
be saved with its path in the ini file "Tstools.ini" as "wordprocessor = path\file.exe"

2. Launch the Selected Wordprocessor using the TsExecV command (which
executes a program using its TsVariable name rather than its program name.

3. Kill the Word Processor using the TsExecKill Function.

{ewc TSTOOLS, TsButton,"Return to ~TsExec Demo. "/AR/ML30R3/H40/W110/B2/D1/N/2 [name=returncalc]
[graphic="!tsblgoup.dib', !tsblgodn.dib', !tsblgodi.dib'/ALC]

[macro=IfThenElse(ismark('readme")," JumpID(tstools.mvb>returnrm',

‘returntoreadme');ji(qchPath,” ExecDemo');DeleteMark(‘readme')',” DeleteMark("readme');ji(qchPath,’ ExecDemo');C
loseWindow(returnrm')")|[Font="Times New Roman"/S13/B4/3-]}

{ewc TSTOOLS, Tsbutton, "" /b0/d0[graphic="!babyup.dib',"!babydn.dib'," !babydi.dib']
=

[name=hugme][macro=tsdisablebutton(hugme')]} ‘ I J

Viewer is a wonderful tool
However...
When [first rolled up my sleeves to do a title I had the following challenges:

1. Thad to learn the Viewer "language".
2. I wanted my titles to be as good as or better than Microsoft's Encarta.

After struggling through the inevitable learning curve, | at first, felt that [was making magic, but
as my skills grew, I wanted to do more than Viewer would let me, and I wanted to do some of the
things I had seen in Encarta, Cinemania and Dinosaurs (to name a few) as well as a few creative
ideas of my own.

I felt I had 3 choices

1. I could look for another authoring environment. (The alternative choices weren't that
appealing and were expensive, and constrained).

2. I could put a Visual Basic "wrapper" around every title. 1 am fluent in Visual Basic
but for a number of the functions, it seemed to be a lot of work and for others, such as
embedded panes like TsButton it was impossible (But, while I enjoy programming,
when I was being creative and authoring titles, I didn't want to be writing software, |
wanted to create great titles without the clutter of programming.)

3. I could develop a set of custom functions that would "flesh out Viewer".
I decided to build a few tools. That soon became a lot of tools.

I am happy to report that to date, virtually every serious Viewer developer that has seen the pre-
release version of the TouchSend Tools has ordered a set.

In fact, today I found out that Microsoft has purchased a set of the TouchSend Tools through an
independent Viewer developer to be used in building the Microsoft University Course Catalog as a
Viewer title. (That made me VERY HAPPY !!!).

To quote one experienced Viewer developer: "TouchSend Tools allow Viewer Authors to do
extensive customization without intensive programming".

My challenge today is how to explain to new inductees to Viewer just what the tools deliver
because new users wouldn't know what Viewer could or could not do. Harking back to my
learning curve challenges I decided to provide a fast look at some of the more interesting functions.

I created the "don't miss" button on the TsToolsW Online Section. With those quick access demos,
and keeping TsTimer, and TsMCI in mind one gets a fairly good sense of what the Tools can let you
do. Suffice it to say, the 100 or so functions I have provided are not for the most part otherwise

directly available in Viewer.

With the TouchSend Tools any creative title author (most of who have no interest in being
programmers) can do what multimedia delivery systems are designed for, namely: to make
exciting, artistic, satisfying and informative titles whether they are for entertainment, education or
reference. If you are a Visual Basic programmer, consider the tools just like getting a whole set of
VBX's. They add additional functionality to your arsenal. As well we are in the process of
building a set of functions to be called directly through Visual Basic called the TouchSend
VBTools which will allow any Visual Basic programmer to directly access the functionality of the
TouchSend Tools from Visual Basic without the need to write and manage several thousand lines of
code.

I would like to thank Steve Pruitt for his inspiration and encouragement throughout the last many
months. Steve thought it would be great if his readers could have a very flexible embedded button
to enjoy and a custom "About" box. I have added some other freebies because they are fun and
as well to provide a sense of how useful Viewer extensions can be.

We have built things that we were told could not be done. I hope you enjoy them. If you like to
program and build anything that you think is really fantastic, please contact me. [would love to
see your work.

I would also like to thank my wife Leah who kept telling me we could make it happen. She was
and is right. So thanks Leah, and Happy Valentines day !

Jeff Kovitz
Valentines Day, 1994

topic

topicl

